Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-pwrkn Total loading time: 0 Render date: 2024-09-22T15:23:08.163Z Has data issue: false hasContentIssue false

10 - The thermodynamic transition scenario

Published online by Cambridge University Press:  07 September 2011

Shankar Prasad Das
Affiliation:
Jawaharlal Nehru University
Get access

Summary

In Chapter 4 we introduced the Kauzmann temperature TK as a possible limiting temperature for the existence of the supercooled liquid phase. The original hypothesis due to Kauzmann proposes eventual crystallization in the supercooled liquid at very low temperatures as a possible way out of the paradoxical situation in which the entropy of the disordered state becomes less than that of the crystal. Another possible explanation of the Kauzmann paradox could be that the simple extrapolation of the high-temperature result to very low temperature is not correct and the entropy difference between supercooled liquid and crystal remains finite down to very low temperature (Donev et al., 2006; Langer, 2006a, 2006b, 2007), finally going to zero only near T = 0. Either of these resolutions, however, leaves us with no understanding of the dramatic slowing down and associated phenomenology of the supercooled region above Tg. The difference of the entropy of the supercooled liquid from that of the solid having only vibrational motion around a frozen structure represents the entropy due to large-scale motion and is identified with the configurational entropy Sc of the liquid. The rapid disappearance of the configurational entropy of the disordered liquid or the so-called “entropy crisis” poses an important question that is essential for our understanding of the physics of the glass-transition phenomena and the divergence of the relaxation time at Tg. Apart from having a characteristic large viscosity, the supercooled liquid shows a discontinuity in specific heat cp at Tg due to freezing of the translational degrees of freedom in the liquid.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×