Book contents
- Frontmatter
- Contents
- Preface
- 1 Orientation
- 2 Gamma, beta, zeta
- 3 Second-order differential equations
- 4 Orthogonal polynomials on an interval
- 5 The classical orthogonal polynomials
- 6 Semi-classical orthogonal polynomials
- 7 Asymptotics of orthogonal polynomials: two methods
- 8 Confluent hypergeometric functions
- 9 Cylinder functions
- 10 Hypergeometric functions
- 11 Spherical functions
- 12 Generalized hypergeometric functions; G-functions
- 13 Asymptotics
- 14 Elliptic functions
- 15 Painlevé transcendents
- Appendix A Complex analysis
- Appendix B Fourier analysis
- References
- Author index
- Notation index
- Subject index
- References
References
Published online by Cambridge University Press: 05 May 2016
- Frontmatter
- Contents
- Preface
- 1 Orientation
- 2 Gamma, beta, zeta
- 3 Second-order differential equations
- 4 Orthogonal polynomials on an interval
- 5 The classical orthogonal polynomials
- 6 Semi-classical orthogonal polynomials
- 7 Asymptotics of orthogonal polynomials: two methods
- 8 Confluent hypergeometric functions
- 9 Cylinder functions
- 10 Hypergeometric functions
- 11 Spherical functions
- 12 Generalized hypergeometric functions; G-functions
- 13 Asymptotics
- 14 Elliptic functions
- 15 Painlevé transcendents
- Appendix A Complex analysis
- Appendix B Fourier analysis
- References
- Author index
- Notation index
- Subject index
- References
Summary
- Type
- Chapter
- Information
- Special Functions and Orthogonal Polynomials , pp. 443 - 462Publisher: Cambridge University PressPrint publication year: 2016