Published online by Cambridge University Press: 05 November 2011
ABSTRACT Rainfall exhibits at every time scale a great variability which becomes extreme for short durations. We first tried to give rainfall occurrence a fractal dimension the main interest of which is to be time scale invariant. This geometrical approach appears to be of limited value, the fractal dimension being dependent upon the intensity threshold used to define the rainy character of a given period. This problem can be overcome by substituting multifractal fields to fractal sets.
The fundamental equation of such fields enables us to relate at every scale the fraction of space occupied by singularities to their probability of appearance. This equation depends only on two parameters characterizing respectively departures of the field under study from homogeneity and monofractality. A time scale invariant frequency-intensity-duration formula has been derived within this frame, which suggests the existence for all durations of a possible maximum precipitation.
FRACTALS ET MULTIFRACTALS APPLIQUÉS À L'ÉTUDE DE LA VARIABILITÉ TEMPORELLE DES PRÉCIPITATIONS
La pluie est un phénomène qui se manifeste dans l'espace et dans le temps. On peut supposer l'existence d'une fonction I(x, t), caractérisant l'intensité des précipitations au point x de l'espace à deux dimensions constitué par la surface terrestre et au temps t, cette intensité étant exprimée en hauteur d'eau par unité de temps, [L] [T]-1. Nous ne connaissons a priori rien des propriétés de cette fonction mis à part l'hypothèse de définition en tout point, mais différents types de mesurages permettent d'en estimer des intégrates selon le temps et/ou l'espace (Fig. 1).
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.