Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
On the Role of Rotation of the Internal Core Relative to the Mantle
Published online by Cambridge University Press: 11 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- Magnetic Noise and the Galactic Dynamo
- On the Oscillation in Model Z
- Nonlinear Dynamos in a Spherical Shell
- The Onset of Dynamo Action in Alpha-lambda Dynamos
- Multifractality, Near-singularities and the Role of Stretching in Turbulence
- Note on Perfect Fast Dynamo Action in a Large-amplitude SFS Map
- A Thermally Driven Disc Dynamo
- Magnetic Instabilities in Rapidly Rotating Systems
- Modes of a Flux Ring Lying in the Equator of a Star
- A Nonaxisymmetric Dynamo in Toroidal Geometry
- Simulating the Interaction of Convection with Magnetic Fields in the Sun
- Experimental Aspects of a Laboratory Scale Liquid Sodium Dynamo Model
- Influence of the Period of an ABC Flow on its Dynamo Action
- Numerical Calculations of Dynamos for ABC and Related Flows
- Local Helicity, a Material Invariant for the Odd-dimensional Incompressible Euler Equations
- On the Quasimagnetostrophic Asymptotic Approximation Related to Solar Activity
- Simple Dynamical Fast Dynamos
- A Numerical Study of Dynamos in Spherical Shells with Conducting Boundaries
- Non-axisymmetric Shear Layers in a Rotating Spherical Shell
- Testing for Dynamo Action
- Alpha-quenching in Cylindrical Magnetoconvection
- On the Stretching of Line Elements in Fluids: an Approach from Differential Geometry
- Instabilities of Tidally and Precessionally Induced Flows
- Probability Distribution of Passive Scalars with Nonlinear Mean Gradient
- Magnetic Fluctuations in Fast Dynamos
- A Statistical Description of MHD Turbulence in Laboratory Plasmas
- Compressible Magnetoconvection in Three Dimensions
- The Excitation of Nonaxisymmetric Magnetic Fields in Galaxies
- Localized Magnetic Fields in a Perfectly Conducting Fluid
- Turbulent Dynamo and the Geomagnetic Secular Variation
- On-Off Intermittency: General Description and Feedback Model
- Dynamo Action in a Nearly Integrable Chaotic Flow
- The Dynamo Mechanism in the Deep Convection Zone of the Sun
- Shearing Instabilities in Magnetoconvection
- On the Role of Rotation of the Internal Core Relative to the Mantle
- Evolution of Magnetic Fields in a Swirling Jet
- Analytic Fast Dynamo Solution for a Two-dimensional Pulsed Flow
- On Magnetic Dynamos in Thin Accretion Disks Around Compact and Young Stars
- The Strong Field Branch of the Childress–Soward Dynamo
- Evidence for the Suppression of the Alpha-effect by Weak Magnetic Fields
- Turbulent Magnetic Transport Effects and their Relation to Magnetic Field Intermittency
- Proving the Existence of Negative Isotropic Eddy Viscosity
- Dynamo Action Induced by Lateral Variation of Electrical Conductivity
- Spherical Inertial Oscillation and Convection
- Hydrodynamic Stability of the ABC Flow
- Dynamos with Ambipolar Diffusion
- Subject Index
Summary
The outer fluid core of the Earth can be considered as a fluid between two hard spheres (the internal core and the rock mantle) rotating with different but close angular velocities. In the incompressible, nonconducting almost inviscid limit a singular cylindrical surface having the radius of the internal sphere appears (the Proudman solution). A shear layer forming around this surface in the non-ideal fluid may have important implications for the geodynamo.
INTRODUCTION
The aim of this short paper is to attract attention to one feature in the Earth's fluid core. The feature is an internal shear layer induced by a relative rotation of the inner core. Large gradients of the velocity around this layer may be important for the geodynamo. Note, in particular, that in the geodynamo model-Z without an account of the inner core rotation one of the basic sources (the α-effect) is assumed to be concentrated near the core-mantle boundary (Braginsky 1993).
The inner core of the Earth can be considered as a hard iron ball of radius approximately 0.2R, where R is the Earth's radius. The rest of the planet is occupied by the outer liquid core and the rock mantle in the form of spherical shells of almost equal width, 0.4R. The other iron-rock planets (Mercury, Mars), except probably Venus, also have inner cores (Stevenson 1983). As the source of compositional convection (Loper & Roberts 1983) the inner core is apparently a necessary part of the planetary dynamo.
- Type
- Chapter
- Information
- Solar and Planetary Dynamos , pp. 265 - 270Publisher: Cambridge University PressPrint publication year: 1994