Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-08T05:38:05.619Z Has data issue: false hasContentIssue false

6 - Soil phases: the gaseous phase

Published online by Cambridge University Press:  11 November 2009

Riccardo Scalenghe
Affiliation:
Università degli Studi, Palermo, Italy
Andrey V. Smagin
Affiliation:
Moscow State University Moscow, Russia
Giacomo Certini
Affiliation:
Università degli Studi di Firenze, Italy
Get access

Summary

Soil acts as a global source, sink and reservoir of gaseous substances contributing to the control of the composition of the atmosphere and affecting the climate conditions of the planet. Despite the importance of the soil gas phase, the study of the processes of production, consumption, and transport of gases in soils still suffers from many uncertainties, particularly methods of measurement. Most frequently, soil gases are monitored as fluxes, or net gas flows at the surface, from which the soil capacity to adsorb or release some gaseous substances is assessed. Surface flux measurements ignore the processes that operate in the soil, and thus many questions remain regarding the mechanisms controlling the fluxes. Another shortcoming is that often the gaseous phase of soil is studied separately from the liquid and solid phases, resulting in serious errors in quantitative evaluation of the soil's capacity to produce, absorb, release and accumulate gaseous substances. The problem concerning the mechanisms and forms of gas transport in such a complicated porous medium also remains open and this restrains the modelling of the gaseous phase dynamics, its vertical and lateral distribution in different types of soils. The spatial and temporal irregularities in gas dynamics require changes to the standard approach of the field studies being carried out only in warm vegetated seasons. Some of these problems will be discussed in this chapter as related to quantitative analyses of the gaseous phase composition and its state in the soil.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×