Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-30T17:22:11.358Z Has data issue: false hasContentIssue false

Chapter 5 - The Life Course Approach to Cognitive Aging and Dementia

from Part II - Society Interacting with Brain, Cognition, and Health in Late Life

Published online by Cambridge University Press:  28 September 2023

Jeanyung Chey
Affiliation:
Seoul National University
Get access

Summary

Sources of resilience against neurodegenerative diseases, such as cognitive reserve, have been identified as modifiable factors that can prevent the manifestation of clinical dementia. A recent trend in dementia research has employed the concepts of reserve and resilience in the context of a lifespan to develop a life course approach, which integrates the risks of dementia and provides prevention strategies throughout life. This chapter introduces the life course approach to understanding dementia, which is a scientific discipline based on the span of life involving biology, psychology, and the social sciences in a single integrated causal structure to provide a framework to organize the multifactorial process involved in human aging and dementia. The cognitive reserve hypothesis and essential studies validating the theory are introduced; these report the moderating effects of literacy and formal education in dementia manifestation. Brain maintenance, another important component in understanding the resistance to brain aging and neurodegenerative diseases, is also discussed. Lastly, the chapter proposes a hypothetical pathway model to help understand the complex interaction between social relation and brain aging underlying the moderation that could either reduce or increase the risks of dementia.

Type
Chapter
Information
Society within the Brain
How Social Networks Interact with Our Brain, Behavior and Health as We Age
, pp. 119 - 140
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albert, S. M., & Teresi, J. A. (1999). Reading ability, education, and cognitive status assessment among older adults in Harlem, New York City. American Journal of Public Health, 89(1), 9597.Google Scholar
Alexander, G. E., Furey, M. L., Grady, C. L., Pietrini, P., Brady, D. R., Mentis, M. J., & Schapiro, M. B. (1997). Association of premorbid intellectual function with cerebral metabolism in Alzheimer’s disease: Implications for the cognitive reserve hypothesis. American Journal of Psychiatry, 154, 165172.Google Scholar
Amieva, H., Mokri, H., Le Goff, M., Meillon, C., Jacqmin-Gadda, H., Foubert-Samier, A., Orgogozo, J.-M., Stern, Y., & Dartigues, J. F. (2014). Compensatory mechanisms in higher-educated subjects with Alzheimer’s disease: A study of 20 years of cognitive decline. Brain, 137(4), 11671175.CrossRefGoogle ScholarPubMed
Bang, M., Kim, J., An, S. K., Youm, Y., Chey, J., Kim, H. C., Park, K., Namkoong, E., & Lee, E. (2019). Associations of systemic inflammation with frontotemporal functional network connectivity and out-degree social-network size in community-dwelling older adults. Brain, Behavior, and Immunity, 79, 309313.CrossRefGoogle ScholarPubMed
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509.Google Scholar
Bertram, L., Lill, C. M., & Tanzi, R. E. (2010). The genetics of Alzheimer disease: Back to the future. Neuron, 68(2), 270281.Google Scholar
Boldrini, M., Fulmore, C. A., Tartt, A. N., Simeon, L. R., Pavlova, I., Poposka, V., Rosloklija, G. B., Stankov, A., Arango, V., Dwork, A. J., Hen, R., & Mann, J. J. (2018). Human hippocampal neurogenesis persists throughout aging. Cell Stem Cell, 22(4), 589599.CrossRefGoogle ScholarPubMed
Borenstein, A., & Mortimer, J. (eds.). (2016). Alzheimer’s disease: Life Course Perspectives on Risk Reduction. Academic Press.Google Scholar
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239259.Google Scholar
Cabeza, R., Albert, M., Belleville, S., Craik, F. I., Duarte, A., Grady, C. L., Lindenberger, U., Nyberg, L., Park, D. C., Reuter-Lorenz, P. A., Rugg, M. D., Steffener, J., & Rajah, M. N. (2018). Maintenance, reserve and compensation: The cognitive neuroscience of healthy ageing. Nature Reviews Neuroscience, 19(11), 701710.Google Scholar
Cabeza, R., Nyberg, L., & Park, D. C. (eds.). (2016). Cognitive Neuroscience of Aging: Linking Cognitive and Cerebral Aging. Oxford University Press.Google Scholar
Campbell, K. L., Grady, C. L., Ng, C., & Hasher, L. (2012). Age differences in the frontoparietal cognitive control network: Implications for distractibility. Neuropsychologia, 50(9), 22122223.Google Scholar
Chey, J, Kim, MJ, Stern, Y, Shin, M, Byun, HS, et al. (2016) Neural Substrates of Reserve Observed in a Non-Demented Aging Population. J Alzheimers Dis Parkinsonism, 7(294), 19.Google Scholar
Chey, J., Na, D. R., Park, S. H., & Park, E. H. (1998). The validity and reliability of the Korean dementia rating scale. Korean Journal of Clinical Psychology, 17(1), 247–58.Google Scholar
Deal, J. A., Betz, J., Yaffe, K., Harris, T., Purchase-Helzner, E., Satterfield, S., Pratt, S., Govil, N., Simonsick, E. M., Lin, F. R., & Health ABC Study Group. (2017). Hearing impairment and incident dementia and cognitive decline in older adults: The health ABC study. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 72(5), 703709.Google Scholar
Duque, A., Arellano, J. I., & Rakic, P. (2022). An assessment of the existence of adult neurogenesis in humans and value of its rodent models for neuropsychiatric diseases. Molecular Psychiatry, 27(1), 377382.CrossRefGoogle ScholarPubMed
Elias, M. F., Wolf, P. A., D’Agostino, R. B., Cobb, J., & White, L. R. (1993). Untreated blood pressure level is inversely related to cognitive functioning: The Framingham Study. American Journal of Epidemiology, 138(6), 353364.CrossRefGoogle ScholarPubMed
Eriksson, P. S., Perfilieva, E., Björk-Eriksson, T., Alborn, A. M., Nordborg, C., Peterson, D. A., & Gage, F. H. (1998). Neurogenesis in the adult human hippocampus. Nature Medicine, 4(11), 13131317.Google Scholar
Fjell, A. M., McEvoy, L., Holland, D., Dale, A. M., Walhovd, K. B., & Alzheimer’s Disease Neuroimaging Initiative. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Progress in Neurobiology, 117, 2040.Google Scholar
Franzmeier, N., Hartmann, J., Taylor, A. N., Araque-Caballero, M. Á., Simon-Vermot, L., Kambeitz-Ilankovic, L., Bürger, K., Catak, C., Janowitz, D., Müller, C., Ertl-Wagner, B., Stahl, R., Dichgans, M., Duering, M., & Ewers, M. (2018). The left frontal cortex supports reserve in aging by enhancing functional network efficiency. Alzheimer’s Research & Therapy, 10(1), 112.Google Scholar
Fuhrer, R., Dufouil, C., & Dartigues, J. F. (2003). Exploring sex differences in the relationship between depressive symptoms and dementia incidence: Prospective results from the PAQUID Study. Journal of the American Geriatrics Society, 51(8), 10551063.Google Scholar
Hall, C. B., Derby, C., LeValley, A., Katz, M. J., Verghese, J., & Lipton, R. B. (2007). Education delays accelerated decline on a memory test in persons who develop dementia. Neurology, 69(17), 16571664.Google Scholar
He, Y. L., Zhang, X. K., & Zhang, M. Y. (2000). Psychosocial risk factors for Alzheimer’s disease. Hong Kong Journal of Psychiatry, 10(2), 28.Google Scholar
Hippius, H., & Neundörfer, G. (2003). The discovery of Alzheimer’s disease. Dialogues in Clinical Neuroscience, 5(1), 101108.Google Scholar
Hyman, B. T., Phelps, C. H., Beach, T. G., Bigio, E. H., Cairns, N. J., Carrillo, M. C., Dickson, D. W., Duyckaerts, C., Frosch, M. P., Masliah, E., Mirra, S. S., Nelson, P. T., Schneider, J. A., Thal, D. R., Thies, B., Trojanowski, J. Q., Vinters, H. V., & Montine, T. J. (2012). National Institute on Aging–Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimer’s & dementia, 8(1), 113.CrossRefGoogle ScholarPubMed
Jack, C. R. Jr, & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron, 80(6), 13471358.Google Scholar
Jack, C. R. Jr, Wiste, H. J., Therneau, T. M., Weigand, S. D., Knopman, D. S., Mielke, M. M., Lowe, V. J., Vemuri, P., Machulda, M. M., Schwarz, C. G., Gunter, J. L., Senjem, M. L., Graff-Radford, J., Jones, D. T., Roberts, R. O., Rocca, W. A., & Petersen, R. C. (2019). Associations of amyloid, tau, and neurodegeneration biomarker profiles with rates of memory decline among individuals without dementia. Journal of the American Medical Association, 321(23), 23162325.Google Scholar
Jagust, W. (2018). Imaging the evolution and pathophysiology of Alzheimer disease. Nature Reviews Neuroscience, 19(11), 687700.Google Scholar
Katzman, R. (1993). Education and the prevalence of dementia and Alzheimer’s disease. Neurology. 43(1), 1320.Google Scholar
Katzman, R., Terry, R., DeTeresa, R., Brown, T., Davies, P., Fuld, P., Renbing, X., & Peck, A. (1988). Clinical, pathological, and neurochemical changes in dementia: A subgroup with preserved mental status and numerous neocortical plaques. Annals of Neurology, 23(2), 138144.CrossRefGoogle ScholarPubMed
Kempermann, G., Gage, F. H., Aigner, L., Song, H., Curtis, M. A., Thuret, S., Kuhn, H. G., Jessberger, S., Frankland, P. W., Cameron, H. A., Gould, E., Hen, R., Abrous, D. N., Toni, N., Schinder, A. F., Zhao, X., Lucassen, P. J., & Frisén, J. (2018). Human adult neurogenesis: Evidence and remaining questions. Cell Stem Cell, 23(1), 2530.Google Scholar
Kim, J., Chey, J., Kim, S. E., & Kim, H. (2015). The effect of education on regional brain metabolism and its functional connectivity in an aged population utilizing positron emission tomography. Neuroscience Research, 94, 5061.Google Scholar
Kim, H., Kwak, S., Youm, Y., & Chey, J. (2022). Social network characteristics predict loneliness in older adults. Gerontology, 68(3), 309320.CrossRefGoogle ScholarPubMed
Klunk, W. E., Engler, H., Nordberg, A., Wang, Y., Blomqvist, G., Holt, D. P., Bergström, M., Savitcheva, I., Huang, G. F., Estrada, S., Ausén, B., Debnath, M. L., Barletta, J., Price, J. C., Sandell, J., Lopresti, B. J., Wall, A., Koivisto, P., Antoni, G., … Långström, B. (2004). Imaging brain amyloid in Alzheimer’s disease with Pittsburgh Compound‐B. Annals of Neurology, 55(3), 306319.Google Scholar
Langa, K. M., Larson, E. B., Karlawish, J. H., Cutler, D. M., Kabeto, M. U., Kim, S. Y., & Rosen, A. B. (2008). Trends in the prevalence and mortality of cognitive impairment in the United States: Is there evidence of a compression of cognitive morbidity? Alzheimer’s & Dementia, 4(2), 134144.Google Scholar
Livingston, G., Huntley, J., Sommerlad, A., Ames, D., Ballard, C., Banerjee, S., Brayne, C., Burns, A., Cohen-Mansfield, J., Cooper, C., Costafreda, S. G., Dias, A., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Kivimäki, M., Larson, E. B., Ogunniyi, A., … Mukadam, N. (2020). Dementia prevention, intervention, and care: 2020 report of the Lancet Commission. The Lancet, 396(10248), 413446.Google Scholar
Livingston, G., Sommerlad, A., Orgeta, V., Costafreda, S. G., Huntley, J., Ames, D., Ballard, C., Banerjee, S., Burns, A., Cohen-Mansfield, J., Cooper, C., Fox, N., Gitlin, L. N., Howard, R., Kales, H. C., Larson, E. B., Ritchie, K., Rockwood, K., Sampson, E. L., … Mukadam, N. (2017). Dementia prevention, intervention, and care. The Lancet, 390(10113), 26732734.Google Scholar
Lockhart, S. N., & DeCarli, C. (2014). Structural imaging measures of brain aging. Neuropsychology Review, 24(3), 271289.Google Scholar
Maguire, E. A., Gadian, D. G., Johnsrude, I. S., Good, C. D., Ashburner, J., Frackowiak, R. S., & Frith, C. D. (2000). Navigation-related structural change in the hippocampi of taxi drivers. Proceedings of the National Academy of Sciences, 97(8), 43984403.Google Scholar
Marek, S., & Dosenbach, N. U. (2018). The frontoparietal network: Function, electrophysiology, and importance of individual precision mapping. Dialogues in Clinical Neuroscience, 20(2), 133141.Google Scholar
Metzler-Baddeley, C., Jones, D. K., Belaroussi, B., Aggleton, J. P., & O’Sullivan, M. J. (2011). Frontotemporal connections in episodic memory and aging: A diffusion MRI tractography study. Journal of Neuroscience, 31(37), 1323613245.Google Scholar
Moreno-Jiménez, E. P., Terreros-Roncal, J., Flor-García, M., Rábano, A., & Llorens-Martín, M. (2021). Evidences for adult hippocampal neurogenesis in humans. Journal of Neuroscience, 41(12), 25412553.Google Scholar
Mortimer, J. A. (1997). Brain reserve and the clinical expression of Alzheimer’s disease. Geriatrics, 52, S50S53.Google Scholar
Neitzel, J., Franzmeier, N., Rubinski, A., Ewers, M., & Alzheimer’s Disease Neuroimaging Initiative (ADNI). (2019). Left frontal connectivity attenuates the adverse effect of entorhinal tau pathology on memory. Neurology, 93(4), e347e357.CrossRefGoogle ScholarPubMed
Nyberg, L., Lövdén, M., Riklund, K., Lindenberger, U., & Bäckman, L. (2012). Memory aging and brain maintenance. Trends in Cognitive Sciences, 16(5), 292305.Google Scholar
Nyberg, L., & Pudas, S. (2019). Successful memory aging. Annual Review of Psychology, 70, 219243.CrossRefGoogle ScholarPubMed
Opdebeeck, C., Martyr, A., & Clare, L. (2016). Cognitive reserve and cognitive function in healthy older people: A meta-analysis. Aging, Neuropsychology, and Cognition, 23(1), 4060.Google Scholar
Ott, A., Stolk, R. P., van Harskamp, F., Pols, H. A. P., Hofman, A., & Breteler, M. M. B. (1999). Diabetes mellitus and the risk of dementia: The Rotterdam Study. Neurology, 53(9), 19371937.Google Scholar
Ott, A., Van Rossum, C. T. M., van Harskamp, F., Van de Mheen, H., Hofman, A., & Breteler, M. M. B. (1999). Education and the incidence of dementia in a large population-based study: The Rotterdam Study. Neurology, 52(3), 663666.Google Scholar
Perani, D., & Abutalebi, J. (2015). Bilingualism, dementia, cognitive and neural reserve. Current Opinion in Neurology, 28(6), 618625.Google Scholar
Rehm, J., Hasan, O. S., Black, S. E., Shield, K. D., & Schwarzinger, M. (2019). Alcohol use and dementia: A systematic scoping review. Alzheimer’s Research & Therapy, 11(1), 111.Google Scholar
Rentería, M. A., Vonk, J. M., Felix, G., Avila, J. F., Zahodne, L. B., Dalchand, E., Frazer, K. M., Martinez, M. N., Shouel, H. L., & Manly, J. J. (2019). Illiteracy, dementia risk, and cognitive trajectories among older adults with low education. Neurology, 93(24), e2247e2256.Google Scholar
Richards, M., James, S. N., Sizer, A., Sharma, N., Rawle, M., Davis, D. H., & Kuh, D. (2019). Identifying the lifetime cognitive and socioeconomic antecedents of cognitive state: Seven decades of follow-up in a British birth cohort study. BMJ Open, 9(4), e024404.Google Scholar
Riley, K. P., Snowdon, D. A., & Markesbery, W. R. (2002). Alzheimer’s neurofibrillary pathology and the spectrum of cognitive function: Findings from the nun study. Annals of Neurology, 51(5), 567577.Google Scholar
Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence for threshold theory. Neuropsychology, 7(3), 273.Google Scholar
Scarmeas, N., & Stern, Y. (2003). Cognitive reserve and lifestyle. Journal of Clinical and Experimental Neuropsychology, 25(5), 625633.Google Scholar
Shankar, A., McMunn, A., Banks, J., & Steptoe, A. (2011). Loneliness, social isolation, and behavioral and biological health indicators in older adults. Health Psychology, 30(4), 377.Google Scholar
Snowdon, D. A. (2003). Healthy aging and dementia: Findings from the nun study. Annals of Internal Medicine, 139(5), 450454.Google Scholar
Snowdon, D. A., Kemper, S. J., Mortimer, J. A., Greiner, L. H., Wekstein, D. R., & Markesbery, W. R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the nun study. Journal of the American Medical Association, 275(7), 528532.Google Scholar
Sorrells, S. F., Paredes, M. F., Cebrian-Silla, A., Sandoval, K., Qi, D., Kelley, K. W., James, D., Mayer, S., Chang, J., Auguste, K. I., Chang, E. F., Gutierrez, A. J., Kriegstein, A. R., Mathern, G. W., Oldham, M. C., Huang, E. J., Garcia-Verdugo, J. M., Yang, Z., & Alvarez-Buylla, A. (2018). Human hippocampal neurogenesis drops sharply in children to undetectable levels in adults. Nature. 555, 377381.Google Scholar
Spalding, K. L., Bergmann, O., Alkass, K., Bernard, S., Salehpour, M., Huttner, H. B., Boström, E., Westerlund, I., Vial, C., Buchholz, B. A., Possnert, G., Mash, D. C., Druid, H., & Frisén, J. (2013). Dynamics of hippocampal neurogenesis in adult humans. Cell, 153(6), 12191227.Google Scholar
Steptoe, A., Shankar, A., Demakakos, P., & Wardle, J. (2013). Social isolation, loneliness, and all-cause mortality in older men and women. Proceedings of the National Academy of Sciences, 110(15), 57975801.Google Scholar
Stern, Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. Journal of the International Neuropsychological Society, 8(3), 448460.Google Scholar
Stern, Y. (2012). Cognitive reserve in ageing and Alzheimer’s disease. The Lancet Neurology, 11(11), 10061012.CrossRefGoogle ScholarPubMed
Stern, Y., Albert, M., Barnes, C., Cabeza, R., Pascual-Leone, A., & Rapp, P. (2022). Framework for Terms Used in Research of Reserve and Resilience. Collaboratory on Research Definitions for Reserve and Resilience in Cognitive Aging and Dementia. https://reserveandresilience.com/framework/Google Scholar
Stern, Y., Arenaza-Urquijo, E. M., Bartrés-Faz, D., Belleville, S., Cantilon, M., Chetelat, G., Ewers, M., Franzmeier, N., Kempermann, G., Kremen, W. S., Okonkwo, O., Scarmeas, N., Soldan, A., Udeh-Momoh, C., Valenzuela, M., Vemuri, P., Vuoksimaa, E., & Reserve, Resilience and Protective Factors PIA Empirical Definitions and Conceptual Frameworks Workgroup. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dementia, 16(9), 13051311.Google Scholar
Stern, Y., Barnes, C. A., Grady, C., Jones, R. N., & Raz, N. (2019). Brain reserve, cognitive reserve, compensation, and maintenance: Operationalization, validity, and mechanisms of cognitive resilience. Neurobiology of Aging, 83, 124129.Google Scholar
Stern, Y., Gazes, Y., Razlighi, Q., Steffener, J., & Habeck, C. (2018). A task-invariant cognitive reserve network. Neuroimage, 178, 3645.Google Scholar
Stern, Y., Habeck, C., Steffener, J., Barulli, D., Gazes, Y., Razlighi, Q., Shaked, D., & Salthouse, T. (2014). The Reference Ability Neural Network Study: Motivation, design, and initial feasibility analyses. Neuroimage, 103, 139151.Google Scholar
Stern, Y., Zarahn, E., Habeck, C., Holtzer, R., Rakitin, B. C., Kumar, A., Flynn, J., Steffener, J., & Brown, T. (2008). A common neural network for cognitive reserve in verbal and object working memory in young but not old. Cerebral Cortex, 18(4), 959967.CrossRefGoogle Scholar
Strittmatter, W. J., Saunders, A. M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G. S., & Roses, A. D. (1993). Apolipoprotein E: High-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proceedings of the National Academy of Sciences, 90(5), 19771981.Google Scholar
Tanzi, R. E. (2012). The genetics of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(10).Google Scholar
Thomas, A. K. & Gutchess, A. (eds.). (2020). The Cambridge Handbook of Cognitive Aging: A Life Course Perspective. Cambridge University Press.Google Scholar
Valenzuela, M. J., & Sachdev, P. (2006). Brain reserve and dementia: A systematic review. Psychological Medicine, 36(4), 441454.Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Lowe, V. J., Graff‐Radford, J., Roberts, R. O., Mielke, M. M., Machulda, M. M., Petersen, R. C., & Jack, C. R. Jr (2017). Age, vascular health, and Alzheimer disease biomarkers in an elderly sample. Annals of Neurology, 82(5), 706718.Google Scholar
Vemuri, P., Lesnick, T. G., Przybelski, S. A., Knopman, D. S., Roberts, R. O., Lowe, V. J., Kantarci, K., Senjem, M. L., Gunter, J. L., Boeve, B. F., Petersen, R. C., & Jack, C. R. Jr (2012). Effect of lifestyle activities on Alzheimer disease biomarkers and cognition. Annals of Neurology, 72(5), 730738.Google Scholar
Whalley, L. J., Dick, F. D., & McNeill, G. (2006). A life-course approach to the aetiology of late-onset dementias. The Lancet Neurology, 5(1), 8796.Google Scholar
Wilkins, R. H., & Brody, I. A. (1969). Alzheimers disease. Archives of Neurology, 21(1), 109.Google Scholar
Wilson, R. S., Boyle, P. A., Yu, L., Barnes, L. L., Schneider, J. A., & Bennett, D. A. (2013). Life-span cognitive activity, neuropathologic burden, and cognitive aging. Neurology, 81(4), 314321.Google Scholar
Yao, Z. F., Yang, M. H., Hwang, K., & Hsieh, S. (2020). Frontoparietal structural properties mediate adult life span differences in executive function. Scientific Reports, 10(1), 114.CrossRefGoogle ScholarPubMed
Zhang, M., Katzman, R., Yu, E., Liu, W., Xiao, S. F., & Yan, H. (1998). A preliminary analysis of incidence of dementia in Shanghai, China. Psychiatry and Clinical Neurosciences, 52, S291S294.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×