Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-09T15:30:44.841Z Has data issue: false hasContentIssue false

ART. 152 - On the Bending and Vibration of Thin Elastic Shells, especially of Cylindrical Form

Published online by Cambridge University Press:  05 July 2011

Get access

Summary

In a former publication “On the Infinitesimal Bending of Surfaces of Revolution,” I have applied the theory of bending to explain the deformation and vibration of thin elastic shells which are symmetrical about an axis, and have worked out in detail the case where the shell is a portion of a sphere. The validity of this application depends entirely upon the principle that when the shell is thin enough and is vibrating in one of the graver possible modes, the middle surface behaves as if it were inextensible. “When a thin sheet of matter is subjected to stress, the force which it opposes to extension is great in comparison with that which it opposes to bending. Under ordinary circumstances, the deformation takes place approximately as if the sheet were inextensible as a whole, a condition which, in a remarkable degree, facilitates calculation, though (it need scarcely be said) even bending implies an extension of all but the central layers.” If we fix our attention upon one of the terms involving sines or cosines of multiples of the longitude, into which, according to Fourier's theorem, the whole deformation may be resolved, the condition of inextensibility is almost enough to define the type. If there are two edges, e.g., parallel to circles of latitude, the solution contains two arbitrary constants; but if a pole be included, as when the shell is in the form of a hemisphere, one of the constants vanishes, and the type of deformation is wholly determined, without regard to any other mechanical condition, to be satisfied at the edge or elsewhere.

Type
Chapter
Information
Scientific Papers , pp. 217 - 232
Publisher: Cambridge University Press
Print publication year: 2009
First published in: 1902

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×