Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T22:35:47.950Z Has data issue: false hasContentIssue false

13 - Pollutant Emissions of Alternative Fuels

Published online by Cambridge University Press:  01 December 2022

Jacqueline O'Connor
Affiliation:
Pennsylvania State University
Bobby Noble
Affiliation:
Electric Power Research Institute
Tim Lieuwen
Affiliation:
Georgia Institute of Technology
Get access

Summary

A major motivation for the development and ultimate replacement of petroleum-based fuels with alternatives is the desire to reduce the carbon emissions (i.e., CO2) created when burning hydrocarbon fuels in prime mover devices. In addition to CO2, combustion of hydrocarbon fuels in air will inevitably create a number of other emissions (e.g., NOx, soot, etc.), which can have detrimental effects on human health or the local (or global) environment. Furthermore, the desire for a more economic and stable fuel supply has also provided impetus for the identification of alternative feedstocks for fuels. With these motivations to find alternative fuels for power generation, it is important to understand how different fuels can impact pollutant formation. This chapter focuses on the fundamentals of pollutant formation in combustion, as well as the impact of various alternative fuels on the combustion generated emissions. This includes carbon monoxide, nitrogen oxides (NOx), and soot. These topics are addressed for a variety of candidate fuels, including hydrogen and ammonia.

Type
Chapter
Information
Renewable Fuels
Sources, Conversion, and Utilization
, pp. 451 - 484
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abian, M., Alzueta, M. U. & Glarborg, P., 2015. Mixtures in a flow reactor: Toward an accurate prediction of thermal NO. International Journal of Chemical Kinetics, 47(8) pp. 518532.CrossRefGoogle Scholar
Alfè, M., Apicella, B., Barbella, R., Rouzaud, J. N., Tregrossi, A. & Ciajolo, A. 2009. Structure–property relationship in nanostructures of young and mature soot in premixed flames. Proceedings of the Combustion Institute, 32(1) pp. 697704.Google Scholar
Anca-Couce, A., Sommersacher, P., Evic, N. M. R. & Scharler, R., 2018. Experiments and modelling of NOx precursors release (NH3 and HCN) in fixed-bed biomass combustion conditions. Fuel, 222, pp. 529537.Google Scholar
Asgari, N. & Padak, B., 2018. Effect of fuel composition on NOx formation in high-pressure syngas/air combustion. AIChE Journal, 64(8), pp. 31343140.Google Scholar
Barrientos, E. J., Lapuerta, M. & Boehman, A. L., 2013. Group additivity in soot formation for the example of C-5 oxygenated hydrocarbon fuels. Combustion and Flame, 160, pp. 14841498.Google Scholar
Bhagwan, R., Habisreuther, P., Zarzalis, N. & Turrini, F., 2014. An experimental comparison of the emissions characteristics of standard Jet A-1 and synthetic fuels. Flow Turbulence and Combustion, 92(4), pp. 865884.Google Scholar
Blakey, S., Rye, L. & Wilson, C. W., 2011. Aviation gas turbine alternative fuels: A review. Proceedings of the Combustion Institute, 33(2), pp. 28632885.Google Scholar
Bohon, M. D., Guiberti, T. F. & Roberts, W. L., 2018. PLIF measurements of non-thermal NO concentrations in alcohol and alkane premixed flames. Combustion and Flame, 194, pp. 363375.Google Scholar
Bozzelli, J. W. & Dean, A. M., 1995. O + NNH: A possible new route for NOx formation in flames. International Journal of Chemical Kinetics, 27(11), pp. 10971109.Google Scholar
Braun-Unkhoff, M., Riedel, U. & Wahl, C., 2017. About the emissions of alternative jet fuels. CEAS Aeronautical Journal, 8(1), pp. 167180.Google Scholar
Browne, E. C., Franklin, J.P., Canagaratna, M. R., Massoli, P., Kirchstetter, T. W., Worsnop, D. R., Wilson, K. R. and Kroll, J. H. 2015. Changes to the chemical composition of soot from heterogeneous oxidation reactions. The Journal of Physical Chemistry A, 119(7), pp. 11541163.Google Scholar
Buczkó, N. A., Varga, T., Zsely, I. G. & Turanyi, T., 2018. Formation of NO in high temperature N2/O2/H2O mixtures: Re-evaluation of rate coefficients. Energy and Fuels, 32(10), pp. 1011410120.Google Scholar
Bulzan, D., Anderson, B., Wey, C., Howard, R., Winstead, E., Beyersdorf, A., Corporan, E., DeWitt, M. J., Klingshirn, C., Herndon, S., Miake-Lye, R., Timko, M., Wood, E., Tacina, K. M., Liscinsky, D., Hagen, D., Lobo, P., & Whitefield, P. 2010. October. Gaseous and particulate emissions results of the NASA alternative aviation fuel experiment (AAFEX). Turbo Expo 2010, Glasgow, Scotland, UK 2010.Google Scholar
Calcote, H. F. & Manos, D. M., 1983. Effect of molecular structure on incipient soot formation. Combustion and Flame, 49, pp. 289304.Google Scholar
Commodo, M., De Falco, G., Bruno, A., Borriello, C., Minutolo, P. and D’Anna, A. 2015. Physicochemical evolution of nascent soot particles in a laminar premixed flame: From nucleation to early growth. Combustion and Flame, 162, pp. 38543863.Google Scholar
Commodo, M., Tessitore, G., De Falco, G., Bruno, A., Minutolo, P. and D’Anna, A. 2015. Further details on particle inception and growth in premixed flames. Proceedings of the Combustion Institute, 35(2), pp. 17951802.Google Scholar
Corporan, E., DeWitt, M. J., Belovich, V., Pawlik, R., Lynch, A. C., Gord, J. R. and Meyer, T. R. 2007. Emissions characteristics of a turbine engine and research combustor burning a Fischer-Tropsch jet fuel. Energy & Fuels, 21(5), pp. 26152626.Google Scholar
Corporan, E., DeWitt, M. J., Klingshim, C. D. & Striebich, R. C., 2007. DOD Assured Fuels Initiative: B-52 Aircraft Emissions Burning A Fischer–Tropsch/JP-8 Fuel Blend. Tucson, AZ.Google Scholar
Cui, Q., Morokuma, K., Bowman, J. M. & Klippenstein, S. J., 1999. The spin-forbidden reaction CH+N2=HCN+Nr revisited. II. Non-adiabatic transition state theory and application. Journal of Chemical Physics, 110(19), pp. 94699482.Google Scholar
Dagaut, P., Glarborg, P. & Alzueta, M. U., 2008. The oxidation of hydrogen cyanide and related chemistry. Progress in Energy and Combustion Science, 34(1), pp. 146.Google Scholar
D’Alessio, A., D’Anna, A., D’Orsi, A., Minutolo, P., Barbella, R. & Ciajolo, A. 1992. Precursor formation and soot inception in premixed ethylene flames. Proceedings of the Combustion Institute, 24(1), pp. 973980.Google Scholar
Das, D. D., John, P. C. S., McEnally, C. S., Kim, S. & Pfefferle, L. D. 2018. Measuring and predicting sooting tendencies of oxygenates, alkanes, alkenes, cycloalkanes, and aromatics on a unified scale. Combustion and Flame, 190, pp. 349364.Google Scholar
Das, D. D., McEnally, C. S., Kwan, T. A., Zimmerman, J. B., Cannella, W. J., Mueller, C. J. & Pfefferle, L. D. 2017. Sooting tendencies of diesel fuels, jet fuels, and their surrogates in diffusion flames. Fuel, 197, pp. 445458.Google Scholar
Dean, A. M. & Bozzelli, J. W., 1999. Combustion chemistry of nitrogen. In: J. W. C. Gardiner, ed. Gas-Phase Combustion Chemistry. Springer, pp. 125343.Google Scholar
Delimont, J., Cunningham, S., Oskam, G. & Ramotowski, M., 2021. Part Load Testing of a Low NOx Combustor with Hydrogen-Methane Fuel Mixtures. TurboExpo 2021, Virtual Conference, GT2021–59419.Google Scholar
DeWitt, M. J., Corporan, E., Graham, J. & Minus, D., 2008. Effects of aromatic type and concentration in Fischer-Tropsch fuel on emissions production and material compatibility. Energy & Fuels, 22(4), pp. 24112418.Google Scholar
Dryer, F. L., 2015. Chemical kinetic and combustion characteristics of transportation fuels. Proceedings of the Combustion Institute, 35(1), pp. 117144.Google Scholar
Echavarria, C. A., Jaramillo, I. C., Sarofim, A. F. & Lighty, J. S., 2011. Studies of soot oxidation and fragmentation in a two-stage burner under fuel-lean and fuel-rich conditions. Proceedings of the Combustion Institute, 33(1), pp. 659666.Google Scholar
Edenhofer, O., Pichs-Madruga, R., Sokona, Y., Minx, J. C., Farahani, E., Kadner, S., Seyboth, K., Adler, A., Baum, I., Brunner, S., Eickemeier, P., Kriemann, B., Savolainen, J., Schlomer, S., von Stechow, C., & Zwickel, T. 2014. Intergovernmental Panel on Climate Change IPCC.: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the IPCC, Cambridge University Press.Google Scholar
Elishav, O., Mosevitzky Lis, B., Miller, E. M., Arent, D. J., Valera-Medina, A., Grinberg Dana, A., Shter, G. E. & Grader, G. S. 2020. Progress and prospective of nitrogen-based alternative fuels. Chemical Reviews, 120(12), pp. 53525436.CrossRefGoogle ScholarPubMed
Evans, B., 2013. Using Local Green Energy and Ammonia to Power Gas Turbine Generators. 10th NH3 Fuel Conference, www.ammoniaenergy.org/paper/using-local-green-energy-and-ammonia-to-power-gas-turbine-generators/Google Scholar
Fenimore, C. P., 1971. Formation of nitric oxide in premixed hydrocarbon flames. Proceedings of the Combustion Institute, 13(1), pp. 373380.CrossRefGoogle Scholar
Finlayson-Pitts, B. J. & Pitts, J. N., 1997. Tropospheric air pollution: Ozone, airborne toxics, polycyclic aromatic hydrocarbons and particles. Science, 276(5315), pp. 10451051.Google Scholar
Frenklach, M., 2002. Reaction mechanism of soot formation in flames. Physical Chemistry Chemical Physics, 4(11), pp. 20282037.Google Scholar
Frenklach, M. & Wang, H., 1991. Detailed modeling of soot particle nucleation and growth. Proceeding of the Combustion Institute, 23(1), pp. 15591566.CrossRefGoogle Scholar
Glarborg, P., Alzueta, M. U., Dam–Johansen, K. & Miller, J. A., 1998. Kinetic modeling of hydrocarbon/nitric oxide interactions in a flow reactor. Combustion and Flame, 115, pp. 127.Google Scholar
Glarborg, P., Jensen, A. D. & Johnsson, J. E., 2003. Fuel nitrogen conversion in solid fuel fired systems. Progress in Energy and Combustion Science, 29(2), pp. 89113.Google Scholar
Glarborg, P., Miller, J. A., Ruscic, B. & Klippenstein, S. J., 2018. Modeling nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 67, pp. 3168.CrossRefGoogle Scholar
Goh, E., Li, J., Kim, N. Y., Lieuwen, T. & Seitzman, J. 2021. Finite-rate entrainment effects on nitrogen oxide (NOx) emissions in staged combustors. Combustion and Flame, 230, p. 111434.CrossRefGoogle Scholar
Gokulakrishnan, P., Fuller, C. C., Joklik, R. G. & Klassen, M. S., 2012. Chemical Kinetic Modeling of Ignition and Emissions from Natural Gas and LNG Fueled Gas Turbines. Turbo Expo Conference, Copenhagen, Denmark, Paper# GT2012-69902.Google Scholar
Gokulakrishnan, P., Fuller, C. C., Klassen, M. S., Joklik, R. G., Kochar, Y. N., Vaden, S. N., Lieuwen, T. C. & Seitzman, J. M. 2014. Experiments and modeling of propane combustion with vitiation. Combustion and Flame, 161, pp. 20382053.Google Scholar
Gokulakrishnan, P., Fuller, C. C., Klassen, M. S. & Kiel, B. V., 2014. Ignition Characteristics of Alternative JP-8 and Surrogate Fuels under Vitiated Conditions. 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, Paper# AIAA2014-3664.Google Scholar
Gokulakrishnan, P., Fuller, C. & Klassen, M., 2017. Experimental and modeling study of C1 to C3 hydrocarbon ignition in the presence of nitric oxide. Journal of Engineering Gas Turbines and Power, 140(4), p. 041509.Google Scholar
Gokulakrishnan, P. & Klassen, M. S., 2013. NOx and CO formation and control. In T. Lieuwen & V. Yang, eds. Gas Turbine Emissions. Cambridge University Press, pp. 175208.Google Scholar
Gokulakrishnan, P., Klassen, M. S. & Roby, R. J., 2008. Ignition Characteristics of A Fischer-Tropsch Synthetic Jet Fuel. Turbo Expo Conference, Berlin, Germany, Paper#. GT2008-51211.Google Scholar
Gokulakrishnan, P. & Lawrence, A. D., 1999. An experimental study of the inhibiting effect of chlorine in a fluidized bed combustor. Combustion and Flame, 116, pp. 640652.Google Scholar
Han, X., Lavadera, M. L., Brackmann, C., Wang, Z., He, Y. & Konnov, A. A. 2021. Experimental and kinetic modeling study of NO formation in premixed CH4+O2+N2 flames. Combustion and Flame, Volume 223, pp. 349360.Google Scholar
Harvey, J. N., 2007. Understanding the kinetics of spin-forbidden chemical reactions. Physical Chemistry Chemical Physics, 9(3), pp. 331343.Google Scholar
Hayhurst, A. N. & Vince, I. M., 1980. Nitric oxide formation from N2 in flames: The importance of prompt NO. Progress in Energy and Combustion Science, 6(1), pp. 3551.CrossRefGoogle Scholar
Highwood, E. J. & Kinnersley, R. P., 2006. When smoke gets in our eyes: The multiple impacts of atmospheric black carbon on climate, air quality and health. Environment International, 32(4), pp. 560566.Google Scholar
Ichikawa, A., Hayakawa, A., Kitagawa, Y., Somarathne, K. K. A., Kudo, T. & Kobayashi, H. 2015. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed flames at elevated pressures. International Journal of Hydrogen Energy, 40(30), pp. 95709578.Google Scholar
Janssen, N. A., Hoek, G., Simic-Lawson, M., Fischer, P., Van Bree, L., Ten Brink, H., Keuken, M., Atkinson, R. W., Anderson, H. R., Brunekreef, B. & Cassee, F. R. 2011. Black carbon as an additional indicator of the adverse health effects of airborne particles compared with PM10 and PM2. 5. Environmental Health Perspectives, 119(12), pp. 16911699.CrossRefGoogle ScholarPubMed
Johansson, K. O., Head-Gordon, M. P., Schrader, P. E., Wilson, K. R. & Michelsen, H. A. 2018. Resonance-stabilized hydrocarbon-radical chain reactions may explain soot inception and growth. Science, 361(6406) pp. 997–1000.Google Scholar
Karlström, O., Perander, M., DeMartini, N., Brink, A. & Hupa, M. 2017. Role of ash on the NO formation during char oxidation of biomass. Fuel, 190, pp. 274280.Google Scholar
Kasuya, F., Glarborg, F., Johnsson, J. E. & Dam-Johansen, K., 1995. The thermal DeNOx process: Influence of partial pressures and temperature. Chemical Engineering Science, 50(9), pp. 14551466.Google Scholar
Kjaegaard, K., Glarborg, P. & Dam-Johansen, K., 1996. Pressure effects on the thermal DE-NOx process. Proceedings of the Combustion Institute, 26(2), pp. 20672074.Google Scholar
Klippenstein, S. J., Pfeifle, M., Jasper, A. W. & Glarborg, P., 2018. Theory and modeling of relevance to prompt-NO formation at high pressure. Combustion and Flame, 195, pp. 317.CrossRefGoogle Scholar
Kobayashi, H., Hayakawa, A., Somarathne, K. D. & Okafor, E. C., 2019. Science and technology of ammonia combustion. Proceedings of the Combustion Institute, 37(1), pp. 109133.Google Scholar
Kovács, M., Papp, M., Zsély, I. & Turányi, T., 2020. Determination of rate parameters of key N/H/O elementary reactions based on H2/O2/NOx combustion experiments. Fuel, 264, p. 116720.CrossRefGoogle Scholar
Kurata, O. et al., 2017a. Combustion Emissions from NH3 Fuel Gas Turbine Power Generation Demonstrated. 2017 AIChE Annual Meeting, www.ammoniaenergy.org/wp-content/uploads/2019/12/NH3-Energy-2017-Osamu-Kurata.pdfGoogle Scholar
Kurata, O., Iki, N., Matsunuma, T., Inoue, T., Tsujimura, T., Furutani, H., Kobayashi, H. & Hayakawa, A. 2017b. Performances and emission characteristics of NH3-Air and NH3-CH4-Air combustion gas-turbine power generations. Proceedings of the Combustion Institute, 36(3) pp. 33513359.Google Scholar
Ladommatos, N., Rubenstein, P. & Bennett, P., 1996. Some effects of molecular structure of single hydrocarbons on sooting tendency. Fuel, 75, pp. 114124.Google Scholar
Lamoureux, N., Desgroux, P., El Bakali, A. & Pauwels, J. F., 2010. Experimental and numerical study of the role of NCN in prompt-NO formation in low-pressure CH4–O2–N2 and C2H2–O2–N2 flames. Combustion and Flame, 157, pp. 19291941.Google Scholar
Lamoureux, N., Desgroux, P., Olzmann, M. & Friedrichs, G., 2021. The story of NCN as a key species in prompt-NO formation. Progress in Energy and Combustion Science, 187, p. 100940.Google Scholar
Lawrence, A. D., Bu, J. & Gokulakrishnan, P., 1999. The interactions between SO2, NOx, HCl and Ca in a bench scale fludized bed combustor. Journal of the Institute of Energy, 72(491), pp. 3440.Google Scholar
Lighty, J. S., Veranth, J. M. & Sarofim, A. F., 2000. Combustion aerosols: Factors governing their size and composition and implications to human health. Journal of the Air & Waste Management Association, 50(9), pp. 15651618.CrossRefGoogle ScholarPubMed
Lippmann, M., 2014. Toxicological and epidemiological studies of cardiovascular effects of ambient air fine particulate matter (PM2. 5) and its chemical components: Coherence and public health implications. Critical Reviews in Toxicology, 44(4), pp. 299347.CrossRefGoogle ScholarPubMed
Liu, P., Lin, H., Yang, Y., Shao, C., Guan, B. & Huang, Z. 2015. Investigating the role of CH2 radicals in the HACA mechanism. The Journal of Physical Chemistry A, 119(13), pp. 32613268.Google Scholar
Liu, X., Luo, Z. & Yu, C., 2019. Conversion of char-N into NOx and N2O during combustion of biomass char. Fuel, 242, pp. 389–97.Google Scholar
Lobo, P., Hagen, D. E. & Whitefield, P. D., 2011. Comparison of PM emissions from a commercial jet engine burning conventional, biomass, and Fischer-Tropsch fuels. Environmental Science & Technology, 45(24), pp. 1074410749.Google Scholar
Lobo, P., Rye, L., Williams, P. I., Christie, S., Uryga-Bugajska, I., Wilson, C. W., Hagen, D. E., Whitefield, P. D., Blakey, S., Coe, H., Raper, D. & Pourkashanian, M. 2012. Impact of alternative fuels on emissions characteristics of a gas turbine engine – part 1: Gaseous and particulate matter emissions. Environmental Science & Technology, 46(19), pp. 1080510811.Google Scholar
Lyon, R. K. & Benn, D., 1978. Kinetics of the NO-NH3-O2 reaction. Proceedings of the Combustion Institute, 17(1), pp. 601610.Google Scholar
Malte, P. C. & Pratt, D. T., 1975. Measurements of atomic oxygen and nitrogen oxides in jet-stirred combustion. Proceedings of the Combustion Institute, 15(1), pp. 10611070.Google Scholar
McEnally, C. S. & Pfefferle, L. D., 2007. Improved sooting tendency measurements for aromatic hydrocarbons and their implications for naphthalene formation pathways. Combustion and Flame, 148, pp. 210222.Google Scholar
McEnally, C. S., Pfefferle, L. D., Atakan, B. & Kohse-Hoinghaus, K., 2006. Studies of aromatic hydrocarbon formation mechanisms in flames: Progress towards closing the fuel gap. Progress in Energy and Combustion Science, 32(2), pp. 247294.Google Scholar
Mensch, A., Santoro, R. J., Litzinger, T. A. & Lee, S. Y., 2010. Sooting characteristics of surrogates for jet fuels. Combustion and Flame, 157, pp. 10971105.Google Scholar
Michelsen, H. A., 2017. Probing soot formation, chemical and physical evolution, and oxidation: A review of in situ diagnostic techniques and needs. Proceedings of the Combustion Institute, 36(1), pp. 717735.Google Scholar
Michelsen, H. A., Colket, M. B., Bengtsson, P. E., D’anna, A., Desgroux, P., Haynes, B. S., Miller, J. H., Nathan, G. J., Pitsch, H. & Wang, H. 2020. A review of terminology used to describe soot formation and evolution under combustion and pyrolytic conditions. ACS Nano, 14(10), pp. 1247012490.Google Scholar
Miller, J. A. & Bowman, C. T., 1989. Mechanism and modeling of nitrogen chemistry in combustion. Progress in Energy and Combustion Science, 15(4), pp. 287338.Google Scholar
Miller, J. A. & Glarborg, P., 1999. Modeling the thermal De-NOx process: Closing in on a final solution. International Journal of Chemical Kinetics, 31(11), pp. 757765.Google Scholar
Moses, C. A. & Roets, P. N., 2008. Properties, Characteristics and Combustion Performance of Sasol Fully Synthetic Jet Fuel. Turbo Expo Conference, Berlin, Germany, Paper# GT2008-50545.Google Scholar
Moskaleva, L. V. & Lin, M. C., 2000. The spin-conserved reaction CH + N2 → H + NCN: A major pathway to prompt NO studied by quantum/statistical theory calculations and kinetic modeling of rate constant. Proceedings of the Combustion Institute, 28(2), pp. 23932401.Google Scholar
Nienow, A. M. & Roberts, J. T., 2006. Heterogeneous chemistry of carbon aerosols. Annual Review of Physical Chemistry, 57, pp. 105128.Google Scholar
Noble, D., Wu, D., Emerson, B., Sheppard, S., Lieuwen, T. and Angello, L. 2021. Assessment of current capabilities and near-term availability of hydrogen-fired gas turbines considering a low-carbon future. Journal of Engineering for Gas Turbines and Power, 143(4), p. 041002.Google Scholar
Ozgen, S., Cernuschi, S. & Caserini, S., 2021. An overview of nitrogen oxides emissions from biomass combustion for domestic heat production. Renewable and Sustainable Energy Reviews, 135, p. 110113.CrossRefGoogle Scholar
Patel, S., 2019. High-volume hydrogen gas turbines take shape. Power Magazine, May 1, 2019. www.powermag.com/high-volume-hydrogen-gas-turbines-take-shape/Google Scholar
Pugh, D., Bowen, P., Valera-Medina, A., Giles, A., Runyon, J. & Marsh, R. 2019. Influence of steam addition and elevated ambient conditions on NOx reduction in a staged premixed swirling NH3/H2 flame. Proceedings of the Combustion Institute, 37(4), pp. 54015409.Google Scholar
Richter, H. & Howard, J. B., 2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot – a review of chemical reaction pathways. Progress in Energy and Combustion Science, 26(4-6), pp. 565608.Google Scholar
Richter, S., Kathrotia, T., Naumann, C., Scheuermann, S. and Riedel, U. 2021. Investigation of the sooting propensity of aviation fuel mixtures. CEAS Aeronautical Journal, 12(1), pp. 115123.Google Scholar
Russo, C., Tregrossi, A. & Ciajolo, A., 2015. Dehydrogenation and growth of soot in premixed flames. Proceedings of the Combustion Institute, 35(2), pp. 18031809.Google Scholar
Saffaripour, M., Zabeti, P., Kholghy, M. & Thomson, M. J., 2011. An experimental comparison of the sooting behavior of synthetic jet fuels. Energy Fuels, 25(12), pp. 55845593.Google Scholar
Schmidt, C. C., 2001. Flow Reactor Study of the Effect of Pressure on the Thermal DE-NOx Reaction, PhD Thesis, Stanford University, CA, United States of America.Google Scholar
Shukla, B. & Koshi, M., 2012. A novel route for PAH growth in HACA based mechanisms. Combustion and Flame, 159, pp. 35893596.CrossRefGoogle Scholar
Skreiberg, O., Kilpinen, P. & Glarborg, P., 2004. Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combustion and Flame, 136, pp. 501518.Google Scholar
Smith, G. P., Golden, D. M., Frenklach, M., Moriarty, N. W., Eiteneer, B., Goldenberg, M., Bowman, C. T., Hanson, R. K., Song, S., Gardiner, W. C. Jr., Lissianski, V. V. & Qin, Z. 1999. GRI-Mech 3.0. [Online] Available at: www.me.berkeley.edu/gri_mech/Google Scholar
Song, Y., Hashemi, H., Christensen, J.M., Zou, C., Marshall, P. and Glarborg, P. 2016. Ammonia oxidation at high pressure and intermediate temperatures. Fuel, 181, pp. 358365.Google Scholar
Staffell, I., Scamman, D., Abad, A. V., Balcombe, P., Dodds, P. E., Ekins, P., Shah, N. & Ward, K. R. 2019. The role of hydrogen and fuel cells in the global energy system. Energy & Environmental Science, 12(2), pp. 463491.Google Scholar
Stanmore, B. R., Brilhac, J. F. & Gilot, P., 2001. The oxidation of soot: A review of experiments, mechanisms and models. Carbon, 39(15), pp. 22472268.Google Scholar
Stanmore, B. R. & Tschamber, V., Brilhac, J. F., 2008. Oxidation of carbon by NOx, with particular reference to NO2 and N2O. Fuel, 87(2), pp. 131146.Google Scholar
Therkelsen, P., Werts, T., McDonell, V. & Samuelsen, S., 2009. Analysis of NOx formation in a hydrogen-fueled gas turbine engine. Journal of Engineering for Gas Turbines and Power, 131(3), p. 031507.Google Scholar
Thomson, M. & Mitra, T., 2018. A radical approach to soot formation. Science, 361(6406) pp. 978979.CrossRefGoogle ScholarPubMed
Toth, P., Jacobsson, D., Ek, M. & Wiinikka, H., 2019. Real-time, in-situ, atomic scale observation of soot oxidation. Carbon, 145, pp. 149160.Google Scholar
University of California at San Diego, 2018. Chemical-Kinetic Mechanisms for Combustion Applications. [Online] Available at: https://web.eng.ucsd.edu/mae/groups/combustion/mechanism.html [Accessed August 2021].Google Scholar
Valera-Medina, A., Amer-Hatem, F., Azad, A. K., Dedoussi, I. C., De Joannon, M., Fernandes, R. X., Glarborg, P., Hashemi, H., He, X., Mashruk, S., McGowan, J., Mounaim-Rouselle, C., Ortiz-Prado, A., Ortiz-Valera, A., Rossetti, I., Shu, B., Yehia, M., Xiao, H. & Costa, M. 2021. Review on ammonia as a potential fuel: From synthesis to economics. Energy & Fuels, 35(9), pp. 69647029.Google Scholar
Valera-Medina, A., Gutesa, M., Xiao, H., Pugh, D., Giles, A., Goktepe, B., Marsh, R. & Bowen, P. 2019. Premixed ammonia/hydrogen swirl combustion under rich-fuel conditions for gas turbines operation. International Journal of Hydrogen Energy, 44(16), pp. 86158626.Google Scholar
Valera-Medina, A., Pugh, D. G., Marsh, P., Bulat, G. & Bowen, P. 2017. Preliminary study on lean premixed combustion of ammonia-hydrogen for swirling gas turbine combustors. International Journal of Hydrogen Energy, 42(38), pp. 2449524503.Google Scholar
Valera-Medina, A., Xiao, H., Owen-Jones, M., David, W. I. & Bowen, P. J. 2018. Ammonia for power. Progress in Energy and Combustion Science, 69, pp. 63102.Google Scholar
Wal, Vander, L. & Tomasek, R., J., A., 2003. Soot oxidation: Dependence upon initial nanostructure. Combustion and Flame, 134, pp. 19.Google Scholar
Vander Wal, R., Tomasek, A. J., Berger, G. M., Street, K., Hull, D. R., & Thompson, W. K. 2005. Soot Nanostructure: Definition, Quantification and Implications. Dearborn, MI, s.n, 11th Diesel Engine Emission Reduction (DEER) Workshop. Chicago, Il. www.energy.gov/sites/prod/files/2014/03/f9/2004_deer_vander_wal.pdfGoogle Scholar
Varga, T., Nagy, T., Olm, C., Zsély, I. G., Pálvölgyi, R., Valkó, É., Vincze, G., Cserháti, M., Curran, H. J. & Turányi, T. 2015. Optimization of a hydrogen combustion mechanism using both direct and indirect measurements. Proceedings of the Combustion Institute, 35(1), pp. 589596.Google Scholar
Vasudevan, V., Hanson, R. K., Bowman, C. T., Golden, D. M. & Davidson, D. F. 2007. Shock tube study of the reaction of CH with N2: Overall rate and branching ratio. Journal of Physical Chemistry A, 111(46), pp. 1181811830.Google Scholar
Wang, K., Xu, R., Parise, T., Shao, J., Movaghar, A., Lee, D. J., Park, J. W., Gao, Y., Lu, T., Egolfopoulos, F. N., Davidson, D. F., Hanson, R. K., Bowman, C. T. & Wang, H. 2018. A physics-based approach to modeling real-fuel combustion chemistry – IV. HyChem modeling of combustion kinetics of a bio-derived jet fuel and its blends with a conventional Jet-A. Combustion and Flame, 198, pp. 477489.Google Scholar
Watson, G. M., Versailles, P. & Bergthorson, J. M., 2016. NO formation in premixed flames of C1–C3 alkanes and alcohols. Combustion and Flame, 243, pp. 242260.Google Scholar
Westbrook, C. K. & Dryer, F. L., 1984. Chemical kinetic modeling of hydrocarbon combustion. Progress in Energy and Combustion Science, 37(3-4) pp. 157.Google Scholar
Xue, X., Hui, X., Singh, P. & Sung, C., 2017. Soot Formation in non-premixed counterflow flames of conventional and alternative jet fuels. Fuel, 210, pp. 343351.Google Scholar
Yang, Y., Boehman, A. L. & Santoro, R. J., 2007. A study of jet fuel sooting tendency using the threshold sooting index (TSI) model. Combustion and Flame, 149, pp. 191205.CrossRefGoogle Scholar
Yetter, R. A., Dryer, F. L. & Rabitz, H., 1991. A comprehensive reaction mechanism for carbon monoxide/hydrogen/oxygen kinetics. Combustion Science and Technology, 79(1-3) pp. 97128.Google Scholar
Yoshimura, T., McDonell, V. G. & Samuelsen, G. S., 2005. Evaluation of Hydrogen Addition to Natural Gas on the Stability and Emissions Behavior of a Model Gas Turbine Combustor. Turbo Expo Conference, Reno, NV, s.n., Paper # GT2005-68785Google Scholar
Zeldovich, Y. B., 1946. The oxidation of nitrogen in combustion and explosions. Acta Physicochimica U.R.S.S., 21, pp. 577628.Google Scholar
Zhang, H. B., Hou, D., Law, C. K. & You, X., 2016. Role of carbon-addition and hydrogen-migration reactions in soot surface growth. The Journal of Physical Chemistry A, 120(5), pp. 683689.Google Scholar
Zhang, Y., Mathieu, O., Petersen, E. L., Bourque, G. & Curran, H. J. 2017. Assessing the predictions of a NOx kinetic mechanism using recent hydrogen and syngas experimental data. Combustion and Flame, 182, pp. 122141.Google Scholar
Zhou, J., Masutani, S. M., Ishimura, D. M., Turn, S. Q. & Kinoshita, C. M. 2000. Release of fuel-bound nitrogen during biomass gasification. Industrial & Engineering Chemistry Research, 39(3), pp. 626634.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×