Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T20:39:24.547Z Has data issue: false hasContentIssue false

Chapter 3 - Direct Solar Energy

Published online by Cambridge University Press:  05 December 2011

Ottmar Edenhofer
Affiliation:
Potsdam Institute for Climate Impact Research
Ramón Pichs-Madruga
Affiliation:
Centro de Investigaciones de la Economía Mundial (CIEM)
Youba Sokona
Affiliation:
The Sahara and Sahel Observatory
Kristin Seyboth
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Susanne Kadner
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Timm Zwickel
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Eickemeier
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Gerrit Hansen
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Steffen Schlömer
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Christoph von Stechow
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Patrick Matschoss
Affiliation:
Technical Support Unit of Working Group III of the Intergovernmental Panels on Climate Change
Get access

Summary

Executive Summary

Solar energy is abundant and offers significant potential for near-term (2020) and long-term (2050) climate change mitigation. There are a wide variety of solar technologies of varying maturities that can, in most regions of the world, contribute to a suite of energy services. Even though solar energy generation still only represents a small fraction of total energy consumption, markets for solar technologies are growing rapidly. Much of the desirability of solar technology is its inherently smaller environmental burden and the opportunity it offers for positive social impacts. The cost of solar technologies has been reduced significantly over the past 30 years and technical advances and supportive public policies continue to offer the potential for additional cost reductions. Potential deployment scenarios range widely—from a marginal role of direct solar energy in 2050 to one of the major sources of energy supply. The actual deployment achieved will depend on the degree of continued innovation, cost reductions and supportive public policies.

Solar energy is the most abundant of all energy resources. Indeed, the rate at which solar energy is intercepted by the Earth is about 10,000 times greater than the rate at which humankind consumes energy. Although not all countries are equally endowed with solar energy, a significant contribution to the energy mix from direct solar energy is possible for almost every country. Currently, there is no evidence indicating a substantial impact of climate change on regional solar resources.

Type
Chapter
Information
Renewable Energy Sources and Climate Change Mitigation
Special Report of the Intergovernmental Panel on Climate Change
, pp. 333 - 400
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A.T., Kearney (2010). Solar Thermal Electricity 2025–Clean Electricity On Demand: Attractive STE Cost Stabilize Energy Production. A.T.Kearney GmbH, Duesseldorf, Germany, 52 pp.Google Scholar
Abanades, S., Charvin, P., Flamant, G., and Neveu, P. (2006). Screening of watersplitting thermochemical cycles potentially attractive for hydrogen production by concentrated solar energy. Energy, 31(14), pp. 2805–2822.CrossRefGoogle Scholar
Arce, P., Medrano, M., Gil, A., Oró, E., and Cabeza, L.F. (2011). Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe. Applied Energy. 88(8), pp. 2764–2774.CrossRefGoogle Scholar
Arif Hasan, M., and Sumathy, K. (2010). Photovoltaic thermal module concepts and their performance analysis: A review. Renewable and Sustainable Energy Reviews, 14, pp. 1845–1859.CrossRefGoogle Scholar
Asano, H., Yajima, K., and Kaya, Y. (1996). Influence of photovoltaic power generation on required capacity for load frequency control. IEEE Transactions on Energy Conversion, 11(1), pp. 188–193.CrossRefGoogle Scholar
ASHRAE (2009). ASHRAE Handbook – Fundamentals. American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Atlanta, GA, USA.
Athienitis, A.K. (2008). Design of advanced solar homes aimed at net-zero annual energy consumption in Canada. In: ISES-AP – 3rd International Solar Energy Society Conference – Asia Pacific Region. Incorporating the 46th ANZSES Conference, Sydney, Australia, 25-28 Nov. 2008, pp. 14.Google Scholar
Athienitis, A.K., and Santamouris, M. (2002). Thermal Analysis and Design of Passive Solar Buildings. James & James, London, UK, 288 pp.Google Scholar
Bailey, S., Brinker, D., Curtis, H., Jenkins, P., and Scheiman, D. (1997). NASA Technical Memorandum 113155 – Solar Cell Calibration and Measurement Techniques. IECEC-97534, NASA, Cleveland, OH, USA.Google Scholar
Baoshan, L. (2010). Research on the progress of silicon materials in China. In: 6th China SoG Silicon and PV Conference (CSPV) 2010, Shanghai, PR China, 16-18 March 2010.
Bar-Cohen, Y. (ed.) (2006). Biomimetics: Biologically Inspired Technologies. Taylor & Francis, Boca Raton, FL, USA.Google Scholar
Barbose, G., Darghouth, N., and Wiser, R. (2010). The Installed Cost of Photovoltaics in the U.S. from 1998-2009. Lawrence Berkeley National Laboratory, Berkeley, CA, USA.Google Scholar
Barkat, A., Khan, S.H., Rahman, M., Zaman, S., Poddar, A., Halim, S., Ratna, N.N., Majid, M., Maksud, A.K.M., Karim, A., and Islam, S. (2002). Economic and social impact evaluation study of the rural electrification program in Bangladesh. In: Electric Cooperatives in Bangladesh. National Rural Electric Cooperative Association (NRECA) International, Dhaka, Bangladesh, pp. 41.Google Scholar
Barnes, D.F. (1988). Electric Power for Rural Growth: How Electricity Affects Rural Life in Developing Countries. Westview Press, Boulder, CO, USA, 236 pp.Google Scholar
Batley, S.L., Colbourne, D., Fleming, P.D., and Urwin, P. (2001). Citizen versus consumer: challenges in the UK green power market. Energy Policy, 29, pp. 479–487.CrossRefGoogle Scholar
Bazilian, M.D., Leenders, F., Ree, B.G.C., and Prasad, D. (2001). Photovoltaic cogeneration in the built environment. Solar Energy, 71(1), pp. 57–69.CrossRefGoogle Scholar
Benagli, S., Borrello, D., Vallat-Sauvain, E., Meier, J., Kroll, U., Hoetzel, J., Bailat, J., Steinhauser, J., Marmelo, M., and Castens, L. (2009). High-efficiency amorphous silicon devices on LPCVD-ZnO-TCO prepared in industrial KaiTM-M R&D reactor. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009, pp. 2293–2298.Google Scholar
Bernreuther, J., and Haugwitz, F. (2010). The Who's Who of Silicon Production. Bernreuther Consulting, Wuerzburg, Germany.Google Scholar
Bett, A.W., Dimroth, F., Gulter, W., Hoheisel, R., Oliva, E., Philips, S.P., Schone, J., Siefer, G., Steiner, M., Wekkeli, A., Welser, E., Meusel, M., Kostler, W., and Strobl, G. (2009). Highest efficiency multi-junction solar cell for terrestrial and space applications. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009, pp. 1–6.Google Scholar
Beyer, H.G., Decker, B., Luther, J., and Steinberger-Willms, R. (1991). Spatial and temporal characteristics of short term fluctuations in solar radiation for PV-plant applications. In: Proceedings of the 10th E.C. Photovoltaic Solar Energy Conference, Lisbon, Portugal, 8-12 Apr 1991, pp. 453–456.CrossRefGoogle Scholar
Bickel, P., and Friedrich, R. (eds.) (2005). ExternE–Externalities of Energy: Methodology 2005 Update. Office for Official Publications of the European Communities, Luxembourg, 270 pp.Google Scholar
Bloem, H., Monforti-Ferrario, F., Szabo, M., and Jäger-Waldau, A. (2010). Renewable Energy Snapshots 2010. EUR 24440 EN, European Commission, Joint Research Centre, Institute for Energy, Ispra, Italy, 52 pp.
Bloomberg (2010). Bloomberg New Energy Finance – Renewable Energy Data. Subscriber info at: bnef.com/bnef/markets/renewable-energy/solar/.
Bolton, J.R. (1996). Solar photoproduction of hydrogen: A review. Solar Energy, 57(1), pp. 37–50.CrossRefGoogle Scholar
Bosi, M., and Pelosi, C. (2007). The potential of III-V semiconductors as terrestrial photovoltaic devices. Progress in Photovoltaics: Research and Applications, 15(1), pp. 51–68.CrossRefGoogle Scholar
Bouzguenda, M., and Rahman, S. (1993). Value analysis of intermittent generation sources from the system operations perspective. IEEE Transactions on Energy Conversion, 8(3), pp. 484–490.CrossRefGoogle Scholar
Boyle, G. (1996). Renewable Energy: Power for a Sustainable Future. Oxford University Press in association with the Open University, Oxford, UK, 479 pp.Google Scholar
Brabec, C.J. (2004). Organic photovoltaics: technology and market. Solar Energy Materials and Solar Cells, 83(2-3), pp. 273-292.CrossRefGoogle Scholar
Braun, M., Saint-Drenan, Y.-M., Glotzbach, T., Degner, T., and Bofinger, S. (2008). Value of PV energy in Germany – Benefit from the substitution of conventional power plants and local power generation. In: Proceedings of the 23rd European Photovoltaic Solar Energy Conference, Valencia, Spain, 1-5 September 2008, pp. 3645–3652.Google Scholar
Brendel, R. (2003). Thin Film Crystalline Silicon Solar Cells. Wiley-VCH, Weinheim, Germany.CrossRefGoogle Scholar
Breyer, C., Gerlach, A., Mueller, J., Behacker, H., and Milner, A. (2009). Gridparity analysis for EU and US regions and market segments – Dynamics of grid-parity and dependence on solar irradiance, local electricity prices and PV progress ratio. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009, pp. 4492–4500 (ISBN: 3-936338-25-6).Google Scholar
Brouwer, I.D., Hoorweg, J.C., and Liere, M.J. (1997). When households run out of fuel: responses of rural households to decreasing fuelwood availability, Ntcheu District, Malawi. World Development, 25(2), pp. 255-266.CrossRefGoogle Scholar
Bundesverband Solarwirtschaft, e.V. (2010). Statistische Zahlen der deutschen Solarstrombranche (photovoltaik). Bundesverband Solarwirtschaft e.V. (BSW Solar), Berlin, Germany, 4 pp.Google Scholar
Bunea, M.M., Johnston, K., Bonner, C.M., Cousins, P., Smith, D.D., Rose, D.H., Mulligan, W.P., and Swanson, R.M. (2010). Simulation and characterization of high efficiency back contact solar cells for low concentration photovoltaics. In: Proceedings of the 35th Institute of Electrical and Electronics Engineers (IEEE) Photovoltaic Specialists Conference, Honolulu, Hawaii, 20-25 June 2010, pp. 823–826 (ISSN: 0160-8371).Google Scholar
Butti, K., and Perlin, J. (1980). A Golden Thread: 2500 Years of Solar Architecture and Technology. Cheshire Books, Frodsham, UK, 289 pp.Google Scholar
Cabeza, L., Castell, A., Medrano, M., Martorell, I., Pérez, G., and Fernández, I. (2010). Experimental study on the performance of insulation materials in Mediterranean construction. Energy and Buildings, 42(5), pp. 630–636.CrossRefGoogle Scholar
Candanedo, J., and Athienitis, A.K. (2010). A simulation study of anticipatory control strategies in a net zero energy solar-optimized house. ASHRAE Transactions, 116(1), pp. 246–260.Google Scholar
Carlson, D.E., and Wronski, C.R. (1976). Amorphous silicon solar cell. Applied Physics Letters, 28(11), pp. 671–673.CrossRefGoogle Scholar
Castell, A., Martorell, I., Medrano, M., Perez, G., and Cabeza, L.F. (2010). Experimental study using PCM in brick constructive solutions for passive cooling. Energy and Buildings, 42(4), pp. 534–540.CrossRefGoogle Scholar
Catchpole, K.R., and Polman, A. (2008). Plasmonic solar cells. Optics Express, 16(26), pp. 21793–21800.CrossRefGoogle ScholarPubMed
Chalmers, S., Hitt, M., Underhill, J., Anderson, P., Vogt, P., and Ingersoll, R. (1985). The effect of photovoltaic power generation on utility operation. IEEE Transactions on Power Apparatus and Systems, 104(3), pp. 524–530.CrossRefGoogle Scholar
Chang, K.C., Lin, W.M., Lee, T.S., and Chung, K.M. (2009). Local market of solar water heaters in Taiwan: Review and perspectives. Renewable and Sustainable Energy Reviews, 13(9), pp. 2605–2612.CrossRefGoogle Scholar
Chiba, Y., Islam, A., Kakutani, K., Komiya, R., Koide, N., and Han, L. (2005). High efficiency dye sensitized solar cells. In: Technical Digest, 15th International Photovoltaic Science and Engineering Conference, Shanghai, China, 10-15 October 2005, pp. 665–666.
Chow, T.T. (2010). A review on photovoltaic/thermal hybrid solar technology. Applied Energy, 87, pp. 365–379.CrossRefGoogle Scholar
Chowdhury, B., and Rahman, S. (1988). Is central station photovoltaic power dispatchable?IEEE Transactions on Energy Conversion, 3(4), pp. 747–754.CrossRefGoogle Scholar
Chueh, W.C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S.M., and Steinfeld, A. (2010). High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 330, pp. 1797–1801.CrossRefGoogle ScholarPubMed
Clavadetscher, L., and Nordmann, T. (2007). Cost and Performance Trends in Grid-Connected Photovoltaic System and Case Studies. IEA Photovoltaic Power Systems Program (PVPS). Task 2, Report IEA-PVPS T2-06:2007, IEA PVPS Pool Switzerland for the IEA Photovoltaic Power Systems Program, 54 pp. Available at: www.iea-pvps-task2.org/public/download/T2_Cost_and_Performance.pdf.
Cobben, S., Gaiddon, B., and Laukamp, H. (2008). Impact of Photovoltaic Generation on Power Quality in Urban areas with High PV Population: Results from Monitoring Campaigns. PVupscale, WP4 - Deliverable 4.3, Contract EIE/05/171/SI2.420208, Intelligent Energy Europe, PVupscale project, 53 pp. Available at: www.pvupscale.org/IMG/pdf/WP4_D4-3_public_v1c.pdf
Conibeer, G., Green, M.A., Konig, D., Perez-Wurfl, I., Huang, S., Hao, X., Di, D., Shi, L., Shrestha, S., Puthen-Veetil, B., So, Y., Zhang, B., and Wan, Z. (2010). Silicon quantum dot based solar cells: addressing the issues of doping, voltage and current transport. Progress in Photovoltaics: Research and Applications, doi:10.1002/pip.1045.Google Scholar
Coutts, T.J., Ward, J.S., Young, D.L., Emery, K.A., Gessert, T.A., and Noufi, R. (2003). Critical issues in the design of polycrystalline, thin-film tandem solar cells. Progress in Photovoltaics: Research and Applications, 11(6), pp. 359–375.CrossRefGoogle Scholar
Curtright, A., and Apt, J. (2008). The character of power output from utility-scale photovoltaic systems. Progress in Photovoltaics: Research and Applications, 16(3), pp. 241–247.CrossRefGoogle Scholar
Vries, B., Vuuren, D., and Hoogwijk, M.M. (2007). Renewable energy sources: Their global potential for the first half of the 21st century at a global level: An integrated approach. Energy Policy, 35(4), pp. 2590–2610.CrossRefGoogle Scholar
Denholm, P., Drury, E., Margolis, R., and Mehos, M. (2009). Solar Energy: The Largest Energy Resource, Generating Electricity in a Carbon Constrained World. Elsevier, Paris, France.Google Scholar
DESERTEC Foundation (2007). Clean Power from Deserts - The DESERTEC Concept for Energy, Water and Climate Security. 4th ed. WhiteBook, Protext Verlag, Bonn, Germany.
Dimmler, B., and Schock, H.W. (1996). Scaling-up of CIS technology for thin-film solar modules. Progress in Photovoltaics: Research and Applications, 4(6), pp. 425–433.3.0.CO;2-Y>CrossRefGoogle Scholar
Dimroth, F., Baur, C., Bett, A.W., Meusel, M., and Strobl, G. (2005). 3-6 junction photovoltaic cells for space and terrestrial concentrator. In: 31st Institute of Electrical and Electronics Engineers (IEEE) Photovoltaic Specialists Conference, Lake Buena Vista, Florida, 3-7 January 2005, pp. 525–529.Google Scholar
Dincer, I., and Rosen, M. (2010). Thermal Energy Storage. Systems and Applications. 2nd ed. Wiley-Blackwell, Bogner Regis, UK.CrossRefGoogle Scholar
Displaybank (2010). Displaybank Briefing. January 28, 2010. Displaybank Consulting and Research, San Jose, CA, USA. Available for subscribers at: www.displaybank. com/eng/info/sread.php?id=5724.
DLR (2007). AQUA-CSP. Concentrating Solar Power for Seawater Desalination. Final Report. Institute of Technical Thermodynamics, Section Systems Analysis and Technology Assessment, German Aerospace Center (DLR), Stuttgart, Germany, 279 pp.
Duffie, J.A., and Beckman, W.A. (2006). Solar Engineering of Thermal Processes. 3rd ed. Wiley, New York, NY, USA, 928 pp.Google Scholar
Ecofys Netherlands BV (2007). Current State-of-the-Art and Best Practices of BIPV. D6.1.1. European Commission Sixth Framework Programme. Contract No. 019718, Ecofys Netherlands BV, Utrecht, The Netherlands.
ECOSTAR (2005). European Concentrated Solar Thermal Road-Mapping. German Aerospace Centre (DLR), Stuttgart, Germany.
Eiffert, P. (2002). Guidelines for Economic Evaluation of Building Integrated Photovoltaic Power Systems. IEA Photovoltaic Power Systems Program (PVPS), Task 7, NREL/TP-550-31977, National Renewable Energy Laboratory, Golden, CO, USA, 52 pp. Available at: www.nrel.gov/docs/fy03osti/31977.pdf.Google Scholar
Eiffert, P., and Kiss, G.K. (2000). Building-Integrated Photovoltaic Designs for Commercial and Institutional Structures: A Source Book for Architects. National Renewable Energy Laboratory, Golden, CO, USA, 90 pp.Google Scholar
Ellingson, R.J., Beard, M.C., Johnson, J.C., Yu, P., Micic, O.I., Nozik, A.J., Shabaev, A., and Efros, A.L. (2005). Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters, 5(5), pp. 865–871.CrossRefGoogle ScholarPubMed
Elzinga, D. (2008). Urban BIPV in the New Residential Construction Industry. IEA Photovoltaic Power Systems Program (PVPS), Task 10, Activity 3.1, Report IEAPVPS- T10-03:2008, Natural Resources Canada for the International Energy Agency Photovoltaic Power Systems Program, Ottawa, Canada, 58 pp. Available at: www.iea-pvps-task10.org/IMG/pdf/IEA-PVPS_T10-03-2006__Urban_BIPV_in_ the_New_Residential_Construction_Industry.pdf.Google Scholar
EPIA (2010). Global Market Outlook for Photovoltaics until 2014. European Photovoltaic Industry Association (EPIA), Brussels, Belgium, 28 pp.
Epstein, M., Olalde, G., Santen, S., Steinfeld, A., and Wieckert, C. (2008). Towards the industrial solar carbothermic production of zinc. Journal of Solar Energy Engineering, 130(1), 014505.CrossRefGoogle Scholar
ESMAP (2004). The Impact of Energy on Women's Lives in Rural India. Energy Sector Management Assistance Programme (ESMAP) Paper No. ESM276, Joint UNDP/ World Bank ESMAP, Washington, DC, 96 pp.
ESTTP (2006). Solar Thermal Vision 2030. Vision of the Usage and Status of Solar Thermal Energy Technology in Europe and the Corresponding Research Topics to Make the Vision a Reality. European Solar Thermal Technology Platform (ESTTP) Secretariat, Brussels, Belgium, 123 pp.
ESTTP (2008). Solar Heating and Cooling for a Sustainable Energy Future in Europe – Strategic Research Agenda. European Solar Thermal Technology Platform (ESTTP) Secretariat, Brussels, Belgium, 123 pp.
EU PV European Photovoltaic Technology Platform (2007). A Strategic Research Agenda for Photovoltaic Solar Energy Technology. European Communities, Sixth European Framework Programme for Research and Technological Development, Luxembourg, 76 pp.
EurObserv'ER (2009). Photovoltaic Energy Barometer. EurObserv'ER, Observatoire des Energies Renouvelables, Paris, France.
European Commission (2007). A European Strategic Energy Technology Plan (SETPlan) - Technology Map. European Commission, Brussels, Belgium.
European Commission (2008). Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Second Strategic Energy Review. An EU Energy Security and Solidarity Action Plan. European Commission, Brussels, Belgium, 781 pp.
Everett, B. (1996). Solar Thermal Energy. In: Renewable Energy: Power for a Sustainable Future. Boyle, G. (ed.), Oxford University Press, Oxford, UK, pp. 41–88.Google Scholar
Ezzati, M., Lopez, A.D., Rodgers, A., Hoorn, S. Vander, and Murray, C.J.L. (2002). Selected major risk factors and global and regional burden of disease. Lancet, 360(9343), pp. 1347–1360.CrossRefGoogle ScholarPubMed
Faiers, A., and Neame, C. (2006). Consumer attitudes towards domestic solar power systems. Energy Policy, 34, pp. 1797–1806.CrossRefGoogle Scholar
Fawer, M., and Magyar, B. (2010). Solar Industry – Entering New Dimensions: Comparison of Technologies, Markets and Industries. Solar Energy 2010. Sustainable Investment Division, Bank Sarasin, Basel, Switzerland, 56 pp. Available at: www.esocialsciences.com/data/articles/Document110122010400.3811609.pdf.
Felder, R., and Meier, A. (2008). Well-to-wheel analysis of solar hydrogen production and utilization for passenger car transportation. Journal of Solar Energy Engineering, 130(1), 011017.CrossRefGoogle Scholar
Fernández-García, A., Zarza, E., Valenzuela, L., and Perez, M. (2010). Parabolictrough solar collectors and their applications. Renewable and Sustainable Energy Reviews, 14, pp. 1695–1721.CrossRefGoogle Scholar
Fong, K.F., Chow, T.T., Lee, C.K., Lin, Z., and Chan, L.S. (2010). Comparative study of different solar cooling systems for buildings in subtropical city. Solar Energy, 84, pp. 227–244.CrossRefGoogle Scholar
Forrest, S.R. (2005). The limits to organic photovoltaic cell efficiency. Materials Research Society (MRS) Bulletin, 30(1), pp. 28–32.CrossRefGoogle Scholar
Fthenakis, V., and Kim, H.C. (2009). Land use and electricity generation: A lifecycle analysis. Renew. Renewable and Sustainable Energy Reviews, 13(6-7), pp. 1465–1474.CrossRefGoogle Scholar
Fthenakis, V.M., and Kim, H.C. (2010). Photovoltaics: Life-cycle analyses. Solar Energy, doi:10.1016/j.solener.2009.10.002.Google Scholar
Fudholi, A., Sopian, K., Ruslan, M.H., Alghoul, M.A., and Sulaiman, M.Y. (2010). Review of solar dryers for agricultural and marine products. Renewable and Sustainable Energy Reviews, 14(1), pp. 1–30.CrossRefGoogle Scholar
Furbo, S., Andersen, E., Knudsen, S., Vejen, N.K., and Shah, L.J. (2005). Smart solar tanks for small solar domestic hot water systems. Solar Energy, 78(2), pp. 269–279.CrossRefGoogle Scholar
Gaiddon, B., and Jedliczka, M. (2007). Compared Assessment of Selected Environmental Indicators of Photovoltaic Electricity in OECD Cities. IEA Photovoltaic Power Systems Program (PVPS), Task 10, Activity 4.4, Report IEAPVPS- T10-01:2006, French Agency for Environment and Energy Management for the International Energy Agency, Hespu, Villeurbanne, France, 44 pp. Available at: www2.epia.org/documents/NL_0606_002.pdf.Google Scholar
Gil, A., Medrano, M., Martorell, I., Lazaro, A., Dolado, P., Zalba, B., and Cabeza, L.F. (2010). State of the art on high temperature thermal energy storage for power generation. Part 1-Concepts, materials and modellization. Renewable and Sustainable Energy Reviews, 14(1), pp. 31–55.CrossRefGoogle Scholar
Goodrich, A. C., Woodhouse, M., and James, T. (2011). Solar PV manufacturing cost model group: Installed solar PV system prices. Presentation to SEGIS_ADEPT Power Electronic in Photovoltaic Systems Workshop, Arlington, Virginia, 8 February 2001. NREL/PR-6A20-50955. Available at: arpa-e.energy.gov/LinkClick. aspx?fileticket=2WF9d-ukumA%3D&tabid=408.Google Scholar
Gordon, J.M. (ed.) (2001). Solar Energy: The State of the Art. ISES Position Papers. James & James London, UK, 706 pp.Google Scholar
Graf, D., Monnerie, N., Roeb, M., Schmitz, M., and Sattler, C. (2008). Economic comparison of solar hydrogen generation by means of thermochemical cycles and electrolysis. International Journal of Hydrogen Energy, 33(17), pp. 4511–4519.CrossRefGoogle Scholar
Graetzel, M. (2001). Photoelectrochemical cells. Nature, 414(6861), pp. 338–344.CrossRefGoogle Scholar
Green, M.A. (2001). Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Progress in Photovoltaics: Research and Applications, 9(2), pp. 123–135.CrossRefGoogle Scholar
Green, M.A. (2003). Third Generation Photovoltaics: Advanced Solar Energy Conversion. Springer, Berlin, Germany.Google Scholar
Green, M.A., Emery, K., Hishikawa, Y., and Warta, W. (2009). Solar cell efficiency tables (version 34). Progress in Photovoltaics: Research and Applications, 17(5), pp. 320–326.CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., and Warta, W. (2010a). Solar cell efficiency tables (version 35). Progress in Photovoltaics: Research and Applications, 18(2), pp. 144–150.CrossRefGoogle Scholar
Green, M.A., Emery, K., Hishikawa, Y., and Warta, W. (2010b). Solar efficiency tables (version 36). Progress in Photovoltaics: Research and Applications, 18(5), pp. 346–352.CrossRefGoogle Scholar
Gumy, D., Rincon, A.G.Hajdu, R., and Pulgarin, C. (2006). Solar photocatalysis for detoxification and disinfection of water: Different types of suspended and fixed TiO2 catalysts study. Solar Energy, 80, pp. 1376–1381.CrossRefGoogle Scholar
Günes, S., and Sariciftci, N.S. (2008). Hybrid solar cells. Inorganica Chimica Acta, 361, pp. 581–588.CrossRefGoogle Scholar
Hadorn, J.C. (ed.) (2005). Thermal Energy Storage for Solar and Low Energy Buildings: State of the Art. IEA Solar Heating and Cooling Task 32, International Energy Agency, Solar Heating and Cooling Programme, Servei de Publicacions Universidad Lleida, Lleida, Spain, 170 pp.Google Scholar
Hadorn, J.C. (2008). Thermal energy storage – Overview of technologies and status for solar heat. In: EuroSun 2008, 1st International Conference on Solar Heating, Cooling and Buildings, International Solar Energy Society, Lisbon, Portugal, 7-10 October 2008, pp.1-8.Google Scholar
Han, J., Mol, A.P.J., and Lu, Y. (2010). Solar water heaters in China: A new day dawning. Energy Policy, 38(1), pp. 383–391.CrossRefGoogle Scholar
Harvey, L.D.D. (2006). A Handbook on Low-Energy Buildings and District-Energy Systems: Fundamentals, Techniques and Examples. Earthscan, Sterling, VA, USA, 701 pp.Google Scholar
Heiselberg, P. (ed.) (2002). Principles of Hybrid Ventilation. IEA Energy Conservation in Buildings and Community Systems Programme, Annex 35, Hybrid Ventilation and New and Retrofitted Office Buildings, IEA Energy Conservation in Buildings and Community Systems Programme, Birmingham, UK, 73 pp.Google Scholar
Henning, H.-M. (2004). Solar-Assisted Air-Conditioning in Buildings: A Handbook for Planners. Springer, New York, NY, USA, 136 pp.Google Scholar
Henning, H.-M. (2007). Solar assisted air conditioning of buildings – an overview. Applied Thermal Engineering, 27, pp. 1734–1749.CrossRefGoogle Scholar
Hernandez, Gonzalvez, C. (1996). Manual de Energïa Solar Térmica. Instituto para la Diversificación de la Energía (IDAE), Madrid, Spain, 123 pp.Google Scholar
Hoff, T.E., Pasquier, B.J., and Peterson, J.M. (2010). Market transformation benefits of a PV incentive program. In: SOLAR 2010 Conference Proceedings, American Solar Energy Society, Phoenix, Arizona, 17-22 May 2010.Google Scholar
Hoffert, M.I., Caldeira, K., Benford, G., Criswell, D.R., Green, C., Herzog, H., Jain, A.K., Kheshgi, H.S., Lackner, K.S., Lewis, J.S., Lightfoot, H.D., Manheimer, W., Mankins, J.C., Mauel, M.E., Perkins, L.J., Schlesinger, M.E., Volk, T., and Wigley, T.M.L. (2002). Advanced technology paths to global climate stability: Energy for a greenhouse planet. Science, 298, pp. 981–987.CrossRefGoogle ScholarPubMed
Hoffmann, W. (2009). The role of PV solar electricity to power the 21st century's global prime energy demand. IOP Conference Series: Earth and Environmental Sciences, 8, 012007.Google Scholar
Hoffmann, W., Wieder, S., and Pellkofer, T. (2009). Differentiated price experience curves as evaluation tool for judging the further development of crystalline silicon and thin film PV solar electricity products. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009, pp. 4387–4394 (ISBN: 3-936338-25-6).Google Scholar
Hofman, Y., Jager, D., Molenbroek, E., Schilig, F., and Voogt, M. (2002). The Potential of Solar Electricity to reduce CO2 Emissions. Ecofys, Utrecht, The Netherlands, 106 pp.Google Scholar
Hollands, K.G.T., Wright, J.L., and Granqvist, C.G. (2001). Glazing and coatings. In: Solar Energy: The State of the Art. ISES Position Papers. Gordon, J.M. (ed.), James & James, London, UK, pp. 24–107.Google Scholar
Holttinen, H. (2005). Hourly wind power variations in the Nordic countries. Wind Energy, 8(2), pp. 173–195.CrossRefGoogle Scholar
Hoogwijk, M. (2004). On the Global and Regional Potential of Renewable Energy Sources. Department of Science, Technology and Society, Utrecht University, Utrecht, the Netherlands.Google Scholar
Hoogwijk, M., and Graus, W. (2008). Global Potential of Renewable Energy Sources: A Literature Assessment. Ecofys, Utrecht, The Netherlands, 45 pp.Google Scholar
IEA (2007). Renewables for Heating and Cooling – Untapped Potential. International Energy Agency, Paris, 205 pp.
IEA (2008). World Energy Outlook 2008. International Energy Agency, Paris, France, 578 pp.
IEA (2009a). Global Renewable Energy Policies and Measures Database. International Energy Agency, Paris, France. Available at: www.iea.org/textbase/pm/?mode=re.
IEA (2009b). Towards Net Zero Energy Solar Buildings. IEA Energy Conservation in Buildings and Community Systems (ECBCS) Programme, Solar Heating and Cooling Programme, SHC Task 40, ECBCS Annex 52, International Energy Agency, Paris, France. Available at: www.iea-shc.org/task40/.
IEA (2009c). Trends in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2008. IEA Photovoltaic Power Systems Program (PVPS), Task 1, Report IEA-PVPS T1-18:2009, International Energy Agency, Paris, France, 44 pp. Available at: www.iea-pvps.org/index.php?id=32.
IEA (2010a). Energy Technology Perspectives 2010. Scenarios & Strategies to 2050. International Energy Agency, Paris, France, 708 pp.
IEA (2010b). Technology Roadmap, Concentrating Solar Power. International Energy Agency, Paris, France, 48 pp.
IEA (2010c). Technology Roadmap, Solar Photovoltaic Energy. International Energy Agency, Paris, France, 48 pp.
IEA (2010d). World Energy Outlook 2010. International Energy Agency, Paris, France, 736 pp.
IEA (2010e). Trends in Photovoltaic Applications: Survey Report of Selected IEA Countries between 1992 and 2009. IEA Photovoltaic Power Systems Program (PVPS), Task 1, Report IEA-PVPS T1-10-2010, International Energy Agency, Paris, France, 44 pp. Available at: www.iea-pvps.org/index.php?id=32.
IEA ECES (2004). Energy Conservation through Energy Storage (ECES) Implementing Agreement, International Energy Agency, Paris, France, 24 pp. Available at: www.iea-eces.org/files/iaeces_2004.pdf.
IEA NZEB (2009). IEA Joint Project: Towards Net Zero Energy Solar Buildings (NZEBs). SHC Task 40, ECBCS Annex 52, Revised 25 February 2009, IEA Solar Heating and Cooling Programme. Available at: www.iea-shc.org/publications/downloads/task40-Net_Zero_Energy_Solar_Buildings.pdf.
Weiss, W., and Mauthner, F. (2010). Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2008. AEE - Institute for Sustainable Technologies, Gleisdorf, Austria for the International Energy Agency Solar Heating and Cooling Programme, 52 pp. Available at: www.iea-shc.org/publications/downloads/Solar_Heat_Worldwide-2010.pdf.Google Scholar
,Ilex Energy Consulting Ltd., Electricity Research Centre, Electric Power and Energy Systems Research Group, and Manchester Centre for Electrical Energy (2004). Operating Reserve Requirements as Wind Power Penetration Increases in the Irish Electricity System. Report No. 04-RERDD-011-R-01, Sustainable Energy Ireland, Dublin, Ireland. Available at: www.seai.ie/uploadedfiles/InfoCentre/IlexWindReserrev2FSFinal.pdf.Google Scholar
Imre, L. (2007). Solar drying. In: Handbook of Industrial Drying. 3rd ed. Mujumdar, A.S. (ed.), Taylor & Francis, Philadelphia, PA, USA, pp. 307–361.Google Scholar
Iqbal, M. (1984). An Introduction to Solar Radiation. Academic Press, New York, 390 pp.Google Scholar
ISCCP Data Products (2006). International Satellite Cloud Climatology Project (ISCCP). Available at: isccp.giss.nasa.gov/projects/flux.html.
Jäger-Waldau, A. (2005). Photovoltaics Status Report 2005: Research, Solar Cell Production and Market Implementation of Photovoltaics. Euro-Report EUR 21836 EN, European Commission, Joint Research Centre, Renewable Energies Unit, Luxembourg.Google Scholar
Jäger-Waldau, A. (2009). Photovoltaics Status Report 2009: Research, Solar Cell Production and Market Implementation of Photovoltaics. Euro-Report EUR 24027 EN. Office for Official Publications of the European Union, Luxembourg.Google Scholar
Jager-Waldau, A. (2010a). Photovoltaics Status Report 2010: Research, Solar Cell Production and Market Implementation of Photovoltaics. Office for Official Publications of the European Union, Luxembourg.Google Scholar
Jäger-Waldau, A. (2010b). Status and perspectives of thin film photovoltaics. In: Thin Film Solar Cells: Current Status and Future Trends. Bosio, A. and Romeo, A. (eds.), Nova Publishers, New York, NY, USA, pp. 1–24.Google Scholar
Jensen, S.H., Larsen, P.H., and Mogensen, M. (2007). Hydrogen and synthetic fuel production from renewable energy sources. International Journal of Hydrogen Energy, 32(15), pp. 3253–3257.CrossRefGoogle Scholar
Jewell, W., and Ramakumar, R. (1987). The effect of moving clouds on electric utilities with dispersed photovoltaic generation. IEEE Transactions on Energy Conversion, 2(4), pp. 570–576.CrossRefGoogle Scholar
Jewell, W., and Unruh, T. (1990). Limits on cloud-induced fluctuation in photovoltaic generation. IEEE Transaction on Energy Conversion, 5(1), pp. 8–14.CrossRefGoogle Scholar
Kaneko, H., Miura, T., Fuse, A., Ishihara, H., Taku, S., Fukuzumi, H., Naganuma, Y., and Tamaura, Y. (2007). Rotary-type solar reactor for solar hydrogen production with two-step water splitting process. Energy Fuels, 21(4), pp. 2287–2293.CrossRefGoogle Scholar
Kawasaki, N., Oozeki, T., Otani, K., and Kurokawa, K. (2006). An evaluation method of the fluctuation characteristics of photovoltaic systems by using frequency analysis. Solar Energy Materials and Solar Cells, 90(18-19), pp. 3356–3363.CrossRefGoogle Scholar
Kaya, N., Mankins, J.C., Erb, B., Vassaux, D., Pignolet, G., Kassing, D., and Collins, P. (2001). Report of workshop on clean and inexhaustible space solar power at Unispace III Conference. Acta Astronautica, 49(11), pp. 627–630.CrossRefGoogle Scholar
Kern, E.J., and Russell, M. (1988). Spatial and temporal irradiance variations over large array fields. In: Conference Record of the 20th IEEE Photovoltaic Specialists Conference, Las Vegas, NV, 26-30 September 2008, 2, pp. 1043–1050.CrossRefGoogle Scholar
Khanna, R.K., Rathore, R.S., and Sharma, C. (2008). Solar still an appropriate technology for potable water need of remote villages of desert state of India - Rajasthan. Desalination, 220, pp. 645–653.CrossRefGoogle Scholar
Kitamura, A. (1999). Demonstration Test Results for Grid Interconnected Photovoltaic Power Systems. Report IEA-PVPS T5-02:1999, International Energy Agency, Paris, France.Google Scholar
Kobayashi, H., and Takasaki, M. (2006). Demonstration study of autonomous demand area power system. In: Transmission and Distribution Conference and Exhibition 2005/2006, Institute of Electrical and Electronics Engineers (IEEE) Power Engineering Society, Dallas, TX, 21-24 May 2006, pp. 548–555.CrossRefGoogle Scholar
Komiyama, R., Marnay, C., Stadler, M., Lai, J., Borgeson, S., Coffey, B., and Azevedo, I. Lima (2009). Japan's Long-term Energy Demand and Supply Scenario to 2050 – Estimation for the Potential of Massive CO2 Mitigation. The Institute for Energy Economics, Tokyo, Japan.Google Scholar
Komoto, K., Ito, M., Vleuten, P., Faiman, D., and Kurokawa, K. (eds.) (2009). Energy from the Desert: Very Large Scale Photovoltaic Systems: Socioeconomic, Financial, Technical and Environmental Aspects. Earthscan Publishers, London, UK.Google Scholar
Koster, L.J.A., Mihailetchi, V.D., and Blom, P.W.M. (2006). Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Applied Physics Letters, 88(9), 093511, doi:10.1063/1.2181635.Google Scholar
Krebs, F.C. (2005). Alternative PV: Large scale organic photovoltaics. REfocus, 6(3), pp. 38–39.CrossRefGoogle Scholar
Krewitt, W., Nienhaus, K., Kleßmann, C., Capone, C., Stricker, E., Graus, W., Hoogwijk, M., Supersberger, N., Winterfeld, U., and Samadi, S. (2009). Role and Potential of Renewable Energy and Energy Efficiency for Global Energy Supply. Climate Change 18/2009, ISSN 1862-4359, Federal Environment Agency, Dessau-Roßlau, Germany, 336 pp.Google Scholar
Krey, V., and Clarke, L. (2011). Role of renewable energy in climate change mitigation: a synthesis of recent scenarios. Climate Policy, in press.Google Scholar
Kroposki, B., Margolis, R., Kuswa, G., Torres, J., Bower, W., Key, T., and Ton, D. (2008). Renewable Systems Interconnection. National Renewable Energy Laboratory, Golden, CO, USA, 23 pp.CrossRefGoogle Scholar
Kurokawa, K., and Aratani, F. (2004). Perceived technical issues accompanying large PV development and Japanese “PV2030”. In: 19th European Photovoltaic Solar Energy Conference and Exhibition, Paris, France, 7-11 June 2004.Google Scholar
Kurokawa, K., Komoto, K.Vleuten, P., and Faiman, D. (eds.) (2007). Energy from the Desert: Practical Proposals for Very Large Scale Photovoltaic Systems. Earthscan, London, UK.Google Scholar
Kushiya, K. (2009). Key near-term R&D issues for continuous improvement in CIS-based thin-film PV modules. Solar Energy Materials & Solar Cells, 93, pp. 1037–1041.CrossRefGoogle Scholar
Lahkar, P.J., and Samdarshi, S.K. (2010). A review of the thermal performance parameters of box type solar cookers and identification of their correlations. Renewable and Sustainable Energy Reviews, 14, pp. 1615–1621.CrossRefGoogle Scholar
LBBW (2009). Branchenanalyse Photovoltaik. Landesbank Baden-Württemberg (LBBW), Stuttgart, Germany.
Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., and Prather, M. (2007). Historical overview of climate change science. In: Climate Change 2007: The Physical Science Basis. Working Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.). Cambridge University Press, pp. 93–127.Google Scholar
Lee, S., and Yamayee, Z. (1981). Load-following and spinning-reserve penalties for intermittent generation. IEEE Transactions on Power Apparatus and Systems, 100(3), pp. 1203–1211.CrossRefGoogle Scholar
Li, G., Shrotriya, V., Huang, J.S., Yao, Y., Moriarty, T., Emery, K., and Yang, Y. (2005). High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature Materials, 4(11), pp. 864–868.CrossRefGoogle Scholar
Lynch, M. (2002). Reducing environmental damage caused by the collection of cooking fuel by refugees. Refuge, 21(1), pp. 18–27.Google Scholar
Mankins, J.C. (1997). A fresh look at space solar power: New architectures, concepts, and technologies. Acta Astronautica, 41(4-10), pp. 347–359.CrossRefGoogle Scholar
Mankins, J.C. (2002). A technical overview of the “Suntower” solar power satellite concept. Acta Astronautica, 50(6), pp. 369–377.CrossRefGoogle Scholar
Mankins, J.C. (2009). New directions for space solar power. Acta Astronautica, 65, pp. 146–156.CrossRefGoogle Scholar
Manuel, J. (2003). The quest for fire: Hazards of a daily struggle. Environmental Health Perspectives, 111(1), pp. A28-A33.CrossRefGoogle ScholarPubMed
Marcos, J., Marroyo, L., Lorenzo, E., Alvira, D., and Izco, E. (2010). Power output fluctuations in large scale PV plants: One year observations with one second resolution and a derived analytic model. Progress in Photovoltaics: Research and Applications, doi:10.1002/pip.1016.Google Scholar
Marti, A., and Luque, A. (eds.) (2004). Next Generation Photovoltaics: High Efficiency through Full Spectrum Utilization. Institute of Physics Publishing, Bristol, UK and Philadelphia, PA, USA, 332 pp.CrossRefGoogle Scholar
Maycock, P.D. (1976-2003). PV News. PV Energy Systems 1982 (vol 1) through 2003 (vol 22). PV Energy Systems, Williamsburg, VA, USA.Google Scholar
Maycock, P.D. (2002). The World Photovoltaic Market – Report (January). PV Energy Systems, Williamsburg, VA, USA.Google Scholar
Medrano, M., Gil, A., Martorell, I., Potau, X., and Cabeza, L.F. (2010). State of the art on high-temperature thermal energy storage for power generation. Part 2-Case studies. Renewable and Sustainable Energy Reviews, 14(1), pp. 56–72.CrossRefGoogle Scholar
Meeder, A., Neisser, A., Rühle, U., and Mayer, N. (2007). Manufacturing the first MW of large-area CuInS2-based solar modules – Recent experiences and progress. In: Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 3-7 September 2007, pp. 2115.Google Scholar
Meehl, G.A., Stocker, T.F., Collins, W.D., Friedlingstein, P., Gaye, A.T., Gregory, J.M., Kitoh, A., Knutti, R., Murphy, J.M., Noda, A., Raper, S.C.B., Watterson, I.G., Weaver, A.J., and Zhao, Z.-C. (2007). Global climate projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. S. Qin, SolomonD., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Cambridge University Press, pp. 747–846.Google Scholar
Mehling, H., and Cabeza, L.F. (2008). Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. Springer, Berlin, Germany and London, UK, 308 pp.
Meier, J., Dubail, S., Platz, R., Torres, P., Kroll, U., Selvan, J.A., Pellaton|Vaucher, N., Hof, C., Fischer, D., Keppner, H., Flückiger, R., Shah, A., Shklover, S., and Ufert, K.-D. (1997). Towards high-efficiency thin-film silicon solar cells with the “micromorph” concept. Solar Energy Materials and Solar Cells, 49(1-4), pp. 35–44.CrossRefGoogle Scholar
Meleshko, V.P., Kattsov, V.M., Govorkova, B.A., Sporyshev, P.V., Skolnik, I.M., and Sneerov, B.E. (2008). Climate of Russia in the 21st century. Part 3. Future climate change calculated with an ensemble of coupled atmosphere-ocean general circulation CMIP3 models. Meteorology and Hydrology, 33(9), pp. 541–552. Original Russian text published in Meteorologiya i Gidrologiya, no. 9, 2008.CrossRefGoogle Scholar
Miller, J.E., Allendorf, M.D., Diver, R.B., Evans, L.R., Siegel, N.P., and Stuecker, J.N. (2008). Metal oxide composites and structures for ultra-high temperature solar thermochemical cycles. Journal of Materials Science, 43(14), pp. 4714–4728.CrossRefGoogle Scholar
Mills, A., and Wiser, R. (2010). Implications of Wide-Area Geographic Diversity for Short-Term Variability of Solar Power. DE-AC02-05CH11231, LBNL-3884E, Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA, USA.CrossRefGoogle Scholar
Mills, B.F., and Schleich, J. (2009). Profits or preferences? Assessing the adoption of residential solar thermal technologies. Energy Policy, 37(10), pp. 4145–4154.
Mills, E. (2005). The specter of fuel-based lighting. Science, 308(5726), pp. 1263–1264.CrossRefGoogle ScholarPubMed
Ministry of New and Renewable Energy (2009). Jawaharlal Nehru National Solar Mission Towards Building SOLAR INDIA. Ministry of New and Renewable Energy, New Delhi, India, 15 pp.
Mints, P. (2010). The PV industry's black swan. Photovoltaics World, 18 March 2010.Google Scholar
Mints, P. (2011). PV sector market forecast – Thin-film in the era of cheap crystalline PV. Renewable Energy World Magazine. 11 February 2011.Google Scholar
Möller, S., Kaucic, D., and Sattler, C. (2006). Hydrogen production by solar reforming of natural gas: A comparison study of two possible process configurations. Journal of Solar Energy Engineering, 128(1), pp. 16–23.CrossRefGoogle Scholar
Munoz, J., Narvarte, L., and Lorenzo, E. (2007). Experience with PV-diesel hybrid village power systems in southern Morocco. Progress in Photovoltaics: Research and Applications, 15, pp. 529–539.CrossRefGoogle Scholar
Murata, A., Yamaguchi, H., and Otani, K. (2009). A method of estimating the output fluctuation of many photovoltaic power generation systems dispersed in a wide area. Electrical Engineering in Japan, 166(4), pp. 9–19.CrossRefGoogle Scholar
Nankhuni, F.J., and Findeis, J.L. (2004). Natural resource-collection work and children's schooling in Malawi. Agricultural Economics, 31(2-3), pp. 123–134.CrossRefGoogle Scholar
Narayan, G.P., Sharqawy, M.H., Summers, E.K., Lienhard, J.H., Zubair, S.M., and Antar, M.A. (2010). The potential of solar-driven humidification-dehumidification desalination for small-scale decentralized water production. Renewable and Sustainable Energy Reviews, 14, pp. 1187–1201.CrossRefGoogle Scholar
NAS (2004). Laying the Foundation for Space Solar Power – An Assessment of NASA's Space Solar Power Investment Strategy. National Academy of Sciences (NAS), Washington, DC, USA.
NRC (2010). Hidden Costs of Energy: Unpriced Consequences of Energy Production and Use. National Research Council (NRC), The National Academies Press, Washington, DC, USA, 506 pp.
Navigant Consulting Inc. (2006). A Review of PV Inverter Technology Cost and Performance Projections. NREL/SR-620-38771, National Renewable Energy Laboratory, Golden, CO, USA, 100 pp.
NEDO (2009). The Roadmap PV2030+. New Energy and Industrial Technology Organization (NEDO), Kawasaki, Japan.
NEEDS (2009). New Energy Externalities Development for Sustainability (NEEDS). Final Report and Database. New Energy Externalities Development for Sustainability, Rome, Italy.
Neij, L. (2008). Cost development of future technologies for power generation – A study based on experience curves and complementary bottom-up assessments. Energy Policy, 36, pp. 2200–2211.CrossRefGoogle Scholar
Nelson, J. (2003). Over the limit: Strategies for high efficiency. In: The Physics of Solar Cells. Imperial College Press, London, England, pp. 289–323.CrossRefGoogle Scholar
Nicol, F., Wilson, M., and Chiancarella, C. (2006). Using field measurements of desktop illuminance in European offices to investigate its dependence on outdoor conditions and its effect on occupant satisfaction, and the use of lights and blinds. Energy and Buildings, 38(7), pp. 802–813.CrossRefGoogle Scholar
Norton, B. (2001). Solar process heat: Distillation, drying, agricultural and industrial uses. In: Solar Energy: The State of the Art. ISES Position Papers. Gordon, J.M. (ed.), James & James, London, UK, pp. 477–496.Google Scholar
NREL (2011). The Open PV Project (online database). National Renewable Energy Laboratory (NREL), Golden, CO, USA. Available at: openpv.nrel.gov.
O'Regan, B., and Graetzel, M. (1991). A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature, 353(6346), pp. 737–740.CrossRefGoogle Scholar
Ogimoto, K., Oozeki, T., and Ueda, Y. (2010). Long-range power demand and supply planning analysis including photovoltaic generation penetration. The Institute of Electrical Engineers of Japan (IEEJ) Transactions on Power and Energy, Tokyo, 130-B(6), pp. 575–583.Google Scholar
Oozeki, T., Takashima, T., Otani, K., Hishikawa, Y., Koshimizu, G., Uchida, Y., and Ogimoto, K. (2010). Statistical analysis of the smoothing effect for photovoltaic systems in a large area. The Institute of Energy Economics, Japan (IEEJ) Transactions on Power and Energy, Tokyo, 130-B(5), pp. 491–500.CrossRefGoogle Scholar
Otani, K., Minowa, J., and Kurokawa, K. (1997). Study on areal solar irradiance for analyzing areally-totalized PV systems. Solar Energy Materials and Solar Cells, 47(1-4), pp. 281–288.CrossRefGoogle Scholar
Otani, K., Murata, A., Sakuta, K., Minowa, J., and Kurokawa, K. (1998). Statistical smoothing of power delivered to utilities by distributed PV systems. In: 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Proceedings of the International Conference, Vienna, Austria, 6-10 July 1998.Google Scholar
Paksoy, H. (2007). Thermal Energy Storage for Sustainable Energy Consumption: Fundamentals, Case Studies and Design. Springer, London, UK and Berlin, Germany.CrossRefGoogle Scholar
Parente, V., Goldemberg, J., and Zilles, R. (2002). Comments on experience curves for PV modules. Progress in Photovoltaics: Research and Applications, 10, pp. 571–574.CrossRefGoogle Scholar
Park, H.G., and Holt, J.K. (2010). Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energy & Environmental Science, 3(8), pp. 1028–1036.CrossRefGoogle Scholar
Patrick, E. (2007). Sexual violence and fuelwood collection in Darfur. Forced Migration Review, 27, pp. 40–41.Google Scholar
Perpinan, O., Lorenzo|M.A., E.Castro, , and Eyras, R. (2009). Energy payback time of grid connected PV systems: Comparison between tracking and fixed systems. Progress in Photovoltaics: Research and Applications, 17(2), pp. 137–147.CrossRefGoogle Scholar
Photovoltaic Geographic Information System (2008). Solar Radiation and Photovoltaic Electricity Potential Country and Regional Maps for Europe (Africa). Institute for Energy, Renewable Energy Unit, European Commission, Joint Research Centre, Ispra, Italy.
PHPP (2004). PassivHaus Planning Package (PHPP). Technical Information PHI- 2004/1(E) - Specifications for Quality Approved Passive Houses. PassiveHause Institute, Darmstadt, Germany.
Piatkowski, N., Wieckert, C., and Steinfeld, A. (2009). Experimental investigation of a packed-bed solar reactor for the steam-gasification of carbonaceous feedstocks. Fuel Processing Technology, 90(3), pp. 360–366.CrossRefGoogle Scholar
Piwko, R.J., Bai, X., Clark, K., Jordan, G.A., and Miller, N.W. (2007). Intermittency Analysis Project: Appendix B: Impact of Intermittent Generation on Operation of California Power Grid. California Energy Commission, PIER Research Development & Demonstration Program, Sacramento, CA, USA.Google Scholar
Piwko, R., Clark, K., Freeman, L., Jordan, G., and Miller, N. (2010). Western Wind and Solar Integration Study. National Renewable Energy Laboratory, Golden, CO, USA.Google Scholar
POSHIP (2001). Calor Solar Para Provesos Industriales: Proyecto POSHIP (Potential of Solar Heat for Industrial Processes). Instituto Para Lad Diversificacion y Ahorro de Energia (IDAE), Madrid, Spain.
Pregger, T., Graf, D., Krewitt, W., Sattler, C., Roeb, M., and Moeller, S. (2009). Prospects of solar thermal hydrogen production processes. International Journal of Hydrogen Energy, 34(10), pp. 4256–4267.CrossRefGoogle Scholar
Probst, M.M., and Roecker, C. (2007). Towards an improved architectural quality of building integrated solar thermal systems (BIST). Solar Energy, 81(9), pp. 1104–1116.CrossRefGoogle Scholar
Ralegaonkar, R.V., and Gupta, R. (2010). Review of intelligent building construction: A passive solar architecture approach. Renewable and Sustainable Energy Reviews, 14, pp. 2238–2242.CrossRefGoogle Scholar
Ramachandran, J., Pearsall, N.M., and Putrus, G.A. (2004). Reduction in solar radiation fluctuation by spatial smoothing effect. In: 19th European Photovoltaic Solar Energy Conference. Proceedings of the International Conference, WIP-Renewable Energies, Paris, France, 7-11 July 2004, pp. 2900-2903.Google Scholar
REN21 (2009). Renewables Global Status Report. 2009 Update. Renewable Energy Policy Network for the 21st Century Secretariat, Paris, France, 32 pp.
REN21 (2010). Renewables 2010 Global Status Report. Renewable Energy Policy Network for the 21st Century Secretariat, Paris, France, 80 pp.
Richter, C., Teske, S., and Short, R. (2009). Concentrating Solar Power: Global Outlook 2009 – Why Renewable Energy is Hot. Greenpeace International, SolarPACES (Solar Power and Chemical Energy Storage), and ESTELA (European Solar Thermal Electricity Association), 88 pp. Available at: www.greenpeace.org/ raw/content/international/press/reports/concentrating-solar-power-2009.pdf.Google Scholar
Rickerson, W., Halfpenny, T., and Cohan, S. (2009). The emergence of renewable heating and cooling policy in the United States. Policy and Society, 27(4), pp. 365–377.CrossRefGoogle Scholar
Rodat, S., Abanades, S., and Flamant, G. (2009). High-temperature solar methane dissociation in a multitubular cavity-type reactor in the temperature range 1823-2073 K. Energy & Fuels, 23, pp. 2666–2674.CrossRefGoogle Scholar
Roeb, M., Sattler, C., Kluser, R., Monnerie, N., Oliveira, L., Konstandopoulos, A.G., Agrafiotis, C., Zaspalis, V.T., Nalbandian, L., Steele, A., and Stobbe, P. (2006). Solar hydrogen production by a two-step cycle based on mixed iron oxides. Journal of Solar Energy Engineering, 128(2), pp. 125–133.CrossRefGoogle Scholar
Roeb, M., Neises, M., Sack, J.P., Rietbrock, P., Monnerie, N., Dersch, J., Schmitz, M., and Sattler, C. (2009). Operational strategy of a two-step thermochemical process for solar hydrogen production. International Journal of Hydrogen Energy, 34(10), pp. 4537–4545.CrossRefGoogle Scholar
Rogner, H.-H., Barthel, F., Cabrera, M., Faaij, A., Giroux, M., Hall, D., Kagramanian, V., Kononov, S., Lefevre, T., Moreira, R., Notstaller, R., Odell, P., and Taylor, M. (2000). Energy resources. In: World Energy Assessment. Energy and the Challenge of Sustainability. United Nations Development Programme, United Nations Department of Economic and Social Affairs, World Energy Council, New York, USA, 508 pp.Google Scholar
Ropp, M., Newmiller, J., Whitaker, C., and Norris, B. (2008). Review of potential problems and utility concerns arising from high penetration levels of photovoltaics in distribution systems. In: Proceedings of the 33rd Institute of Electrical and Electronics Engineers (IEEE) Photovoltaic Specialists Conference, IEEE, San Diego, CA, 11-16 May, 2008, pp. 518–523.Google Scholar
Ruhl, V., Luetter, F., Schmidt, C., Wackerbauer, J., Triebswetter, U. (2008). Standortgutachten Photovoltaik in Deutschland. EuPD Research and IFO Institut fur Wirtschaftforschung, Universitat Munchen, Bonn, Germany and München, Germany, 28 pp.Google Scholar
Santamouris, M., and Asimakopoulos, D. (eds.) (1996). Passive Cooling of Buildings. James & James, London, 472 pp.Google Scholar
Sargent and Lundy LLC Consulting Group (2003). Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts. National Renewable Energy Laboratory, Golden, CO, USA, 344 pp.
Schaeffer, G.J., Seebregts, A.J., Beurskens, L.W.M., Moor, H.H.C., Alsema, E.A., Sark, W., Durstewicz, M., Perrin, M., Boulanger, P., Laukamp, H., and Zuccaro, C. (2004). Learning from the Sun: Analysis of the Use of Experience Curves for Energy Policy Purposes – The Case of Photovoltaic Power. Final Report of the Photex Project. DEGO: ECN-C-04-035, Energy Research Centre of the Netherlands, Petten, The Netherlands.Google Scholar
Schaller, R., and Klimov, V. (2004). High efficiency carrier multiplication in PbSe nanocrystals: Implications for solar energy conversion. Physical Review Letters, 92(18), 186601.CrossRefGoogle ScholarPubMed
Scheffler, J. (2002). Bestimmung der maximal zulässigen Netzanschlussleistung photovoltaischer Energiewandlungsanlagen in Wohnsiedlungsgebieten. Fakultät Elektrotechnik und Informatik, Technische Universität Chemnitz, Chemnitz, Germany.Google Scholar
Schossig, P., Henning, H.-M., Gschwander, S., and Haussmann, T. (2005). Microencapsulated phase-change materials integrated into construction materials. Solar Energy Materials & Solar Cells, 89, pp. 297–306.CrossRefGoogle Scholar
Schunk, L.O., Haeberling, P., Wepf, S., Wuillemin, D., Meier, A., and Steinfeld, A. (2008). A receiver-reactor for the solar thermal dissociation of zinc oxide. Journal of Solar Energy Engineering, 130(2), 021009.CrossRefGoogle Scholar
Schunk, L.O., Lipinski, W., and Steinfeld, A. (2009). Heat transfer model of a solar receiver-reactor for the thermal dissociation of ZnO - Experimental validation at 10 kW and scale-up to 1 MW. Chemical Engineering Journal, 150(2-3), pp. 502–508.CrossRefGoogle Scholar
SEIA (2010a). US Solar Industry – Year in Review 2009. US Solar Energy Industries Association (SEIA), Washington, DC, USA.
SEIA (2010b). US Solar Market Insight, 2nd Quarter 2010 Executive Summary. US Solar Energy Industries Association (SEIA), Washington, DC, USA.
SEMI (2009a). Polysilicon shipments reach 43,901 Mt in 2008. Press Release, 10 March 2009, Semiconductor Equipment and Materials International (SEMI), San Jose, CA, USA. Available at: www.semi.org/en/Press/CTR_028736.
SEMI (2009b). China's Solar Future (SEMI China White Paper). Semiconductor Equipment and Materials International (SEMI), San Jose, CA, USA.
SEMI (2009c). The Solar PV Landscape in India – An Industry Perspective (SEMI India White Paper). Semiconductor Equipment and Materials International (SEMI), San Jose, CA, USA.
Service, R.F. (2009). Sunlight in your tank. Science, 326(5959), pp. 1471–1475.CrossRefGoogle ScholarPubMed
Sharma, A. (2011). A comprehensive study of solar power in India and World. Renewable and Sustainable Energy Reviews, 15, pp. 1767–1776.CrossRefGoogle Scholar
Shockley, W., and Queisser, H.J. (1961). Detailed balance limit of efficiency of p-n junction solar cells. Journal of Applied Physics, 32(3), pp. 510–519.CrossRefGoogle Scholar
Shu, H., Duanmu|C., L. Zhang, and Zhu, Y. (2010). Study on the decision-making of district cooling and heating systems by means of value engineering. Renewable Energy, 35, pp. 1929–1939.CrossRefGoogle Scholar
Sims, R.E.H., Schock, R.N., Adegbululgbe, A., Fenhann, J., Konstantinaviciute, I., Moomaw, W., Nimir, H.B., Schlamadinger, B., Torres-Martinez, J., Turner, C., Uchiyama, Y., Vuori, S.J.V., Wamukonya, N., and Zhang, X. (2007). Energy supply. In: Climate Change 2007: Mitigation of Climate Change. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Metz, B., Davidson, O.R., Bosch, P.R., Dave, R. and Meyer, L.A. (eds.), Cambridge University Press, pp. 251–322.Google Scholar
Sinha, P., Kriegner, C.J., Schew, W.A., Kaczmar, S.W., Traister, M., and Wilson, D.J. (2008). Regulatory policy governing cadmium-telluride photovoltaics: A case study contrasting life-cycle management with the precautionary principle. Energy Policy, 36, pp. 381–387.CrossRefGoogle Scholar
SolarPACES (2008). SolarPACES Annual Report 2007. International Energy Agency, Paris, France, 204 pp.
SolarPACES (2009a). SolarPACES Annual Report 2008. Task I: Solar Thermal Electric Systems. International Energy Agency, Paris, France, pp. 3.1-3.14.
SolarPACES (2009b). SolarPACES Annual Report 2008. Task VI: Solar Energy & Water Processes and Applications. International Energy Agency, Paris, France, pp. 8.1-12.
Solomon, S., Qin, D., Manning, M., Alley, R.B., Berntsen, T., Bindoff, N.L., Chen, Z., Chidthaisong, A., Gregory, J.M., Hegerl, G.C., Heimann, M., Hewitson, B., Hoskins, B.J., Joos, F., Jouzel, J., Kattsov, V., Lohmann, U., Matsuno, T., Molina, M., Nicholls, N., Overpeck, J., Raga, G., Ramaswamy, V., Ren, J., Rusticucci, M., Somerville, R., Stocker, T.F., Whetton, P., Wood, R.A., and Wratt, D. (2007). Technical summary. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, 2007. Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., and Miller, H.L. (eds.), Cambridge University Press, pp.19-91.Google Scholar
Spath, P.L., and Amos, W.A. (2003). Using a concentrating solar reactor to produce hydrogen and carbon black via thermal decomposition of natural gas: Feasibility and economics. Journal of Solar Energy Engineering, 125(2), pp. 159–164.CrossRefGoogle Scholar
Specht, M., Baumgart, F., Feigl, B., Frick, V., Stuermer, B., Zuberbuehler, U., Sterner, M., and Waldstein, G. (2010). Speicherung von Bioenergie und erneuerbarem Strom im Erdgasnetz (Storage of bioenergy and renewable power in the natural gas network). In: FVEE Annual Meeting 2009. Forschen für globale Märkte erneuerbarer Energien, Berlin, Germany.Google Scholar
Sreeraj, E.S., Chatterjee, K., and Bandyopadhyay, S. (2010). Design of isolated renewable hybrid power systems. Solar Energy, 84(7), pp. 1124–1136.CrossRefGoogle Scholar
Staebler, D.L., and Wronski, C.R. (1977). Reversible conductivity changes in discharge-produced amorphous Si. Applied Physics Letters, 31(4), pp. 292–294.CrossRefGoogle Scholar
Stein, W., Antonioli, B., Bonisch, S., Hausotte, M., Hofmann, A., Joziak, R., Krautz, H., Minton, P., Mone|J.-C., B.J., MüllerSchuster, Pantfö rderA, Springer, G., Springer, J., and Klein, S. (2009). Status of thin-film Si high-efficiency tandem junction module fabrication on ultra-large substrates of 2.20 × 2060 m2 at Sunfilm. In: Proceedings of the 24th EU PV Solar Energy Conference, 6th European PV Industry Forum, Hamburg, Germany, 23 September 2009.Google Scholar
Steinfeld, A. (2005). Solar thermochemical production of hydrogen - a review. Solar Energy, 78(5), pp. 603–615.CrossRefGoogle Scholar
Steinfeld, A., and Meier, A. (2004). Solar Fuels and Materials. In: Encyclopedia of Energy. Vol. 5. Elsevier, Amsterdam, The Netherlands, pp. 623–637.CrossRefGoogle Scholar
Sterner, M. (2009). Bioenergy and Renewable Power Methane in Integrated 100% Renewable Energy Systems. Limiting Global Warming by Transforming Energy Systems. Dissertation, Kassel University, Kassel, Germany.Google Scholar
Sun, S.-S., and Sariciftci, N.S. (eds.) (2005). Organic Photovoltaics: Mechanisms, Materials, and Devices. CRC Press, Taylor & Francis, Boca Raton, FL, USA.Google Scholar
Taguchi, M., Tsunomura, Y., Inoue, H., Taira, S., Nakashima, T., Baba, T., Sakata, H., and Maruyama, E. (2009). High-efficiency HIT solar cell on thin (< 100 μm) silicon wafer. In: Proceedings of the 24th European Photovoltaic Solar Energy Conference, Hamburg, Germany, 21-25 September 2009, pp. 1690.Google Scholar
Teske, S., Pregger, T., Simon, S., Naegler, T., Graus, W., and Lins, C. (2010). Energy [R]evolution 2010–a sustainable world energy outlook. Energy Efficiency, doi:10.1007/s12053-010-9098-y.Google Scholar
The European Parliament and the Council of the European Union (2010). Directive 2010/31/EU of the European Parliament and of the Council of 19 May 2010 on the Energy Performance of Buildings. 2010/31/EU. Official Journal of the European Union, pp. 23.
Torres, J.M.M., Lopez, N.G., and Marquez, C. (2010). The Global Concentrator Solar Power Industry Report 2010-2011. First Conferences Ltd., London, UK.Google Scholar
Trieb, F. (2005). Concentrating Solar Power for the Mediterranean Region, Final Report, German Aerospace Centre (DLR), Stuttgart, 285 pp.Google Scholar
Trieb, F., O'Sullivan, M., Pregger, T., Schillings, C., and Krewitt, W. (2009a). Characterisation of Solar Electricity Import Corridors from MENA to Europe - Potential, Infrastructure and Cost. German Aerospace Centre (DLR), Stuttgart, Germany, 172 pp.Google Scholar
Trieb, F., Schillings, C., O'Sullivan, M., Pregger, T., and Hoyer-Klick, C. (2009b). Global potential of concentrating solar power. In: SolarPACES Conference, Berlin, Germany, 15-18 September 2009.Google Scholar
Tripanagnostopoulos, Y. (2007). Aspects and improvements of hybrid photovoltaic/thermal solar energy systems. Solar Energy, 81(9), pp. 1117–1131.CrossRefGoogle Scholar
Tsilingiridis, G., Martinopoulos, G., and Kyriakis, N. (2004). Life cycle environmental impact of a thermosyphonic domestic solar hot water system in comparison with electrical and gas water heating. Renewable Energy, 29, pp. 1277–1288.CrossRefGoogle Scholar
Tsoutsos, T., Fratezeskaki, N., and Gekas, V. (2005). Environmental impacts from the solar energy technologies. Energy Policy, 33, pp. 289–296.CrossRefGoogle Scholar
Turner, J., Sverdrup, G., Mann, M.K., Maness, P.-C., Kroposki, B., Ghirardi, M., Evans, R.J., and Blake, D. (2008). Renewable hydrogen production. International Journal of Energy Research, 32, pp. 379–407.
Twidell, J. and Weir, A.D. (2006). Renewable Energy Resources. Taylor & Francis, Oxon, UK.Google Scholar
Tzempelikos, A., Athienitis, A.K., and Nazos, A. (2010). Integrated design of perimeter zones with glass facades. ASHRAE Transactions, 116(1), pp. 461–478.Google Scholar
UBS (2009). UBS Wealth Management Research (5 March 2009). Solar Energy. Union Bank of Switzerland, 37 pp. Available at: http://www.cleantechsandiego.org/reports/UBS_Solar_Energy_Report_3-5-09.pdf.
UNEP (2007). Buildings and Climate Change – Status, Challenges and Opportunities. United Nations Environment Programme, Nairobi, Kenya.
Urbschat, C., Barban, F., Baumgartner, B., Beste, M., Herr, M., Schmid-Kieninger, A., Rossani, F., Stry-Hipp, G., and Welke, M. (2002). Sunrise 2002 – The Solar Thermal and Photovoltaic Markets in Europe. Market Survey. eclareon GmbH, Berlin, Germany.Google Scholar
US Photovoltaic Industry Roadmap Steering Committee (2001). Solar-Electric Power: The U.S. Photovoltaic Industry Roadmap. Sandia National Laboratories, Albuquerque, NM, USA, 36 pp.
US DOE (2008). Solar Energy Technologies Programme, Multi Year Program Plan 2008-2012. U.S. Department of Energy (US DOE), Washington, DC, USA.
US DOE (2009). Concentrating Solar Power Commercial Application Study: Reducing Water Consumption of Concentrating Solar Power Electricity Generation. Report to Congress. U.S. Department of Energy (US DOE), Washington, DC, USA, 35 pp.
US DOE (2011). Solar Vision Study (draft). U.S. Department of Energy (US DOE), Washington DC, USA, final publication currently postponed.
Viebahn, P., Lechon, Y., and Trieb, F. (2010). The potential role of concentrated solar power (CSP) in Africa and Europe: A dynamic assessment of technology development, cost development and life cycle inventories until 2050. Energy Policy, doi:10.1016/j.enpol.210.09.026.Google Scholar
Voss, K., Herkel, S., Pfafferott, J., Lohnert, G., and Wagner, A. (2007). Energy efficient office buildings with passive cooling – Results and experiences from a research and demonstration programme. Solar Energy, 81, pp. 424–434.CrossRefGoogle Scholar
Wadia, C., Alivisatos, A.P., and Kammen, D.M. (2009). Materials availability expands the opportunity for large-scale photovoltaic deployment. Environmental Science & Technology, 43(6), pp. 2072–2077.CrossRefGoogle Scholar
Wagner, S., Shay, J.L., Migliorato, P., and Kasper, H.M. (1974). CuInSe2/CdS heterojunction photovoltaic detectors. Applied Physics Letters, 25, pp. 434.CrossRefGoogle Scholar
WEC (1994). New Energy Resources. World Energy Council (WEC), London, UK.
Wei, M., Patadia, S., and Kammen, D. (2010). Putting renewables to work: How many jobs can the clean energy industry generate in the US?Energy Policy, 38, pp. 919–931.CrossRefGoogle Scholar
Weiss, W. (2003). Solar Heating Systems for Houses. A Design Handbook for Solar Combisystems. Earthscan, London, UK.Google Scholar
Weiss, W., and Mauthner, F. (2010). Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2008. AEE - Institute for Sustainable Technologies, Gleisdorf, Austria for the International Energy Agency Solar Heating and Cooling Programme, 52 pp. Available at: www.iea-shc.org/publications/ downloads/Solar_Heat_Worldwide-2010.pdf.
Wentzel, M., and Pouris, A. (2007). The development impact of solar cookers: A review of solar cooking impact research in South Africa. Energy Policy, 35(3), pp. 1909–1919.CrossRefGoogle Scholar
Werner, S. (2006). Ecoheatcool. WP1: The European Heat Market 2003, WP4: District Heating Possibilities, WP2: The European Cooling Market. In: Nordic Energy Perspectives Conference, Helsinki, Finland, 24 January 2006. Available at: www.nordicenergyperspectives.org/doc24jan06.asp.Google Scholar
Wiemken, E., Beyer, H.G., Heydenreich, W., and Kiefer, K. (2001). Power characteristics of PV ensembles: Experiences from the combined power production of 100 grid connected PV systems distributed over the area of Germany. Solar Energy, 70(6), pp. 513–518.CrossRefGoogle Scholar
Wiser, R., Barbose, G., and Peterman, C. (2009). Tracking the Sun: The Installed Cost of Photovoltaics in the U.S. from 1998-2007. Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 42 pp.Google Scholar
Wiser, R., Barbose, G., and Holt, E. (2010). Supporting Solar Power in Renewable Portfolio Standards: Experience from the United States. LBNL-3984E, Lawrence Berkeley National Laboratory, Berkeley, CA, USA, 38 pp.
WMO (2008). Guide to Meteorological Instruments and Methods of Observation. WMO-No. 8, World Meteorological Organization (WMO), Geneva, Switzerland, 681 pp.
World Bank Global Environment Facility Program (2006). Assessment of the World Bank/GEF Strategy for the Market Development of Concentrating Solar Thermal Power. The International Bank for Reconstruction and Development, The World Bank, Washington, DC, USA, 149 pp.
Woyte, A., Belmans, R., and Nijs, J. (2001). Power flow fluctuations in distribution grids with high PV penetration. In: Proceedings of the 17th EC PV Solar Energy Conference, Munich, Germany, 22-26 October 2001, pp. 2414–2417.Google Scholar
Woyte, A., Belmans, R., and Nijs, J. (2007). Fluctuations in instantaneous clearness index: Analysis and statistics. Solar Energy, 81(2), pp. 195–206.CrossRefGoogle Scholar
Yakimov, A., and Forrest, S.R. (2002). High photovoltaics multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters, 80(9), pp. 1667–1669.CrossRefGoogle Scholar
Yamamoto, K., Nakashima, A., Suzuki, T., Yoshimi, M., Nishio, H., and Izumina, M. (1994). Thin-film polycrystalline Si solar cell on glass substrate fabricated by a novel low temperature process. Japanese Journal of Applied Physics, 33, pp. L1751-L1754.CrossRefGoogle Scholar
Yang, C.J. (2010). Reconsidering solar grid parity. Energy Policy, 38, pp. 3270–3273.CrossRefGoogle Scholar
Yang, J., and Guha, S. (1992). Double-junction amorphous silicon-based solar cells with 11-percent stable efficiency. Applied Physics Letters, 61(24), pp. 2917–2919.CrossRefGoogle Scholar
Young, W.R. (1996). History of Applying Photovoltaics to Disaster Relief. Florida Solar Energy Center, Cocoa, FL, USA, 16 pp.
Z'Graggen, A., and Steinfeld, A. (2008). Hydrogen production by steam-gasification of carbonaceous materials using concentrated solar energy – V. Reactor modeling, optimization, and scale-up. International Journal of Hydrogen Energy, 33(20), pp. 5484–5492.CrossRefGoogle Scholar
Zayed, J., and Philippe, S. (2009). Acute oral and inhalation toxicities in rats with cadmium telluride. International Journal of Toxicology, 28(4), pp. 259–265.CrossRefGoogle ScholarPubMed
Zervos, A., Lins, C., and Muth, J. (2010). RE-thinking 2050 – A 100% Renewable Energy Vision for the European Union. European Renewable Energy Council, Brussels, Belgium.Google Scholar
Zhang, X., Ruoshui, W., Molin, H., and Martinot, E. (2010). A study of the role played by renewable energies in China's sustainable energy supply. Energy, 35(11), pp. 4392–4399, doi:10.1016/j.energy.2009.05.030.CrossRefGoogle Scholar
Zoellner, J., Schweizer-Ries, P., and Wemheuer, C. (2008). Public acceptance of renewable energies: Results from case studies in Germany. Energy Policy, 26, pp. 4136–4141.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×