Book contents
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Historical survey
- 3 Instrumentation
- 4 Wave properties of electrons
- 5 The diffraction conditions
- 6 Geometrical features of the pattern
- 7 Kikuchi and resonance patterns
- 8 Real diffraction patterns
- 9 Electron scattering by atoms
- 10 Kinematic electron diffraction
- 11 Fourier components of the crystal potential
- 12 Dynamical theory – transfer matrix method
- 13 Dynamical theory – embedded R-matrix method
- 14 Dynamical theory – integral method
- 15 Structural analysis of crystal surfaces
- 16 Inelastic scattering in a crystal
- 17 Weakly disordered surfaces
- 18 Strongly disordered surfaces
- 19 RHEED intensity oscillations
- Appendix A: Fourier representations
- Appendix B: Green's functions
- Appendix C: Kirchhoff's diffraction theory
- Appendix D: A simple eigenvalue problem
- Appendix E: Waller and Hartree equation
- Appendix F: Optimization of dynamical calculation
- Appendix G: Scattering factor
- References
- Index
Preface
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Preface
- 1 Introduction
- 2 Historical survey
- 3 Instrumentation
- 4 Wave properties of electrons
- 5 The diffraction conditions
- 6 Geometrical features of the pattern
- 7 Kikuchi and resonance patterns
- 8 Real diffraction patterns
- 9 Electron scattering by atoms
- 10 Kinematic electron diffraction
- 11 Fourier components of the crystal potential
- 12 Dynamical theory – transfer matrix method
- 13 Dynamical theory – embedded R-matrix method
- 14 Dynamical theory – integral method
- 15 Structural analysis of crystal surfaces
- 16 Inelastic scattering in a crystal
- 17 Weakly disordered surfaces
- 18 Strongly disordered surfaces
- 19 RHEED intensity oscillations
- Appendix A: Fourier representations
- Appendix B: Green's functions
- Appendix C: Kirchhoff's diffraction theory
- Appendix D: A simple eigenvalue problem
- Appendix E: Waller and Hartree equation
- Appendix F: Optimization of dynamical calculation
- Appendix G: Scattering factor
- References
- Index
Summary
Reflection high-energy electron diffraction (RHEED) is widely used for surface structural analysis in monitoring epitaxial growth. The purposes of this book are to serve as an introduction to RHEED for beginners and to describe detailed experimental and theoretical treatments for experts. This book consists of three parts. From Chapter 1 to Chapter 8 the principles of electron diffraction and many examples of RHEED patterns are described for beginners. Chapters 9-14 and Chapter 16 give detailed descriptions of RHEED theory. The third part consists of applications of RHEED. In Chapter 15, methods for the determination of atomic structures of surfaces using RHEED are explained with some examples. Chapters 17 and 18 give detailed descriptions of RHEED in the study of surface disordering and epitaxial growth. In Chapter 19 we describe RHEED intensity oscillations for various growth systems.
A. I. expresses many thanks to the late Professor R. Uyeda for his encouragement, to Drs T. Emoto and H. Nakahara for assistance in drawing many figures and to Ms M. Miwa, Ms Y. Mashita, Ms K. Hosono and Ms T. Arakawa for typing the text and checking references and indexes. P. I. C. is grateful to Ms A. D. Cohen for assistance with the references and especially to Drs J. M. Van Hove, C. S. Lent, P. R. Pukite and A. M. Dabiran for their help in understanding diffraction.
- Type
- Chapter
- Information
- Reflection High-Energy Electron Diffraction , pp. xi - xiiPublisher: Cambridge University PressPrint publication year: 2004