Published online by Cambridge University Press: 05 June 2012
In days of yore, logic was neatly divided into two parts, Deductive Logic and Inductive Logic (Mill 1949/1843). The two parts were often taught as parts of a single course. Inductive logic has faded away, and now the very term has acquired a slightly antiquated patina. It has also acquired a number of quite specific modern meanings.
One very narrow and very specific meaning is that inductive inference is the inference from a set of observations or observation sentences (crow #1 is black; crow #2 is black; …; crow #n is black) to their universal generalization (all crows are black). There is not much logic here, but there is a big problem: to determine when, if ever, such an inference is “justified.”
A somewhat less ambitious construal of “induction” is as the inference from a statistical sample to a statistical generalization, or an approximate statistical generalization: from “51% of the first 10,000 tosses of this coin yielded heads,” to “Roughly half of the tosses of the coin will, in the long run, yield heads.” So construed (as by Baird 1992), the line between the logic of induction and the mathematics of statistics is a bit vague. This has been of little help to inductive logic, since the logic of statistical inference has itself been controversial.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.