Book contents
- Frontmatter
- Contents
- Preface
- 1 On a conjecture by A. Durfee
- 2 On normal embedding of complex algebraic surfaces
- 3 Local Euler obstruction, old and new, II
- 4 Branching of periodic orbits in reversible Hamiltonian systems
- 5 Topological invariance of the index of a binary differential equation
- 6 About the existence of Milnor fibrations
- 7 Counting hypersurfaces invariant by one-dimensional complex foliations
- 8 A note on topological contact equivalence
- 9 Bi-Lipschitz equivalence, integral closure and invariants
- 10 Solutions to PDEs and stratification conditions
- 11 Real integral closure and Milnor fibrations
- 12 Surfaces around closed principal curvature lines, an inverse problem
- 13 Euler characteristics and a typical values
- 14 Answer to a question of Zariski
- 15 Projections of timelike surfaces in the de Sitter space
- 16 Spacelike submanifolds of codimension at most two in de Sitter space
- 17 The geometry of Hopf and saddle-node bifurcations for waves of Hodgkin-Huxley type
- 18 Global classifications and graphs
- 19 Real analytic Milnor fibrations and a strong Łojasiewicz inequality
- 20 An estimate of the degree of ℒ-determinacy by the degree of A-determinacy for curve germs
- 21 Regularity of the transverse intersection of two regular stratifications
- 22 Pairs of foliations on surfaces
- 23 Bi-Lipschitz equisingularity
- 24 Gaffney's work on equisingularity
- 25 Singularities in algebraic data acquisition
3 - Local Euler obstruction, old and new, II
Published online by Cambridge University Press: 07 September 2011
- Frontmatter
- Contents
- Preface
- 1 On a conjecture by A. Durfee
- 2 On normal embedding of complex algebraic surfaces
- 3 Local Euler obstruction, old and new, II
- 4 Branching of periodic orbits in reversible Hamiltonian systems
- 5 Topological invariance of the index of a binary differential equation
- 6 About the existence of Milnor fibrations
- 7 Counting hypersurfaces invariant by one-dimensional complex foliations
- 8 A note on topological contact equivalence
- 9 Bi-Lipschitz equivalence, integral closure and invariants
- 10 Solutions to PDEs and stratification conditions
- 11 Real integral closure and Milnor fibrations
- 12 Surfaces around closed principal curvature lines, an inverse problem
- 13 Euler characteristics and a typical values
- 14 Answer to a question of Zariski
- 15 Projections of timelike surfaces in the de Sitter space
- 16 Spacelike submanifolds of codimension at most two in de Sitter space
- 17 The geometry of Hopf and saddle-node bifurcations for waves of Hodgkin-Huxley type
- 18 Global classifications and graphs
- 19 Real analytic Milnor fibrations and a strong Łojasiewicz inequality
- 20 An estimate of the degree of ℒ-determinacy by the degree of A-determinacy for curve germs
- 21 Regularity of the transverse intersection of two regular stratifications
- 22 Pairs of foliations on surfaces
- 23 Bi-Lipschitz equisingularity
- 24 Gaffney's work on equisingularity
- 25 Singularities in algebraic data acquisition
Summary
Abstract
This paper is a continuation of the first author's survey Local Euler Obstruction, Old and New (1998). It takes into account recent results obtained by various authors, in particular concerning extensions of the local Euler obstruction for frames, functions and maps and for differential forms and collections of them.
Introduction
The local Euler obstruction was first introduced by R. MacPherson in [34] as a key ingredient for his construction of characteristic classes of singular complex algebraic varieties. Then, an equivalent definition was given by J.-P. Brasselet and M.-H. Schwartz in [7] using vector fields. This new viewpoint brought the local Euler obstruction into the framework of “indices of vector fields on singular varieties”, though the definition only considers radial vector fields. There are various other definitions and interpretations in particular due to Gonzalez-Sprinberg, Verdier, Lê-Teissier and others, and there is a very ample literature on this topic, see for instance [3] and also [1, 7, 9, 12, 13, 17, 23, 33, 34].
A survey was written by the first author [2]. Then, the notion of local Euler obstruction developed mainly in two directions: the first one comes back to MacPherson's definition and concerns differential forms. That is developed by W. Ebeling and S. Gusein-Zade in a series of papers. The second one relates local Euler obstruction with functions defined on the variety [5, 6] and with maps [23]. That approach is useful to relate local Euler obstruction with other indices.
- Type
- Chapter
- Information
- Real and Complex Singularities , pp. 23 - 45Publisher: Cambridge University PressPrint publication year: 2010
- 8
- Cited by