from II - A Theory of Real-time Systems
Published online by Cambridge University Press: 17 March 2011
Introduction
Mutual exclusion algorithms, like those we discussed in Chapter 7, have an abstract behaviour described by the following pseudocode:
while true do
begin
remainder region
trying region
critical section
exit region
end
It is supposed that such algorithms satisfy the following two properties.
Mutual exclusion No two processes are in their critical sections at the same time.
Deadlock freedom If some process is in its trying region then eventually some process is in its critical section. (Note that the process in the critical section might be different from the one initially in its trying region.) Moreover, if a process is in its exit region then that process will eventually enter its remainder region.
As stated in Lynch and Shavit (1992), the known asynchronous mutual exclusion algorithms for n processes require O(n) read and write registers and O(n) operations to access the critical section. These bounds make them rather impractical for large-scale applications, where the number of processes could be very large. This raises the question whether it is possible to achieve mutual exclusion in asynchronous systems consisting of n processes by using a smaller number of shared registers and/or fewer than O(n) operations to access the critical section. Unfortunately, this is impossible for ‘classic reactive systems’ in an asynchronous setting. In fact, Burns and Lynch (1980, 1993) showed the following theorem.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.