from I - A Classic Theory of Reactive Systems
Published online by Cambridge University Press: 17 March 2011
Introduction to Hennessy–Milner logic
In the previous chapters we have seen that implementation verification is a natural approach to establishing the correctness of (models of) reactive systems described, for instance, in the language CCS. The reason is that CCS, like all other process algebras, can be used to describe both actual systems and their specifications. However, when establishing the correctness of our system with respect to a specification using a notion of equivalence such as observational equivalence, we are forced to specify in some way the overall behaviour of the system.
Suppose, for instance, that all we want to know about our system is whether it can perform an a-labelled transition ‘now’. Phrasing this correctness requirement in terms of observational equivalence seems at best unnatural and maybe cannot be done at all! (See the paper Boudol and Larsen (1992) for an investigation of this issue.)
We can imagine a whole array of similar properties of a process that we might be interested in specifying and checking. For instance, we may wish to know whether our computer scientist of Chapter 2
is not willing to drink tea now,
is willing to drink both coffee and tea now,
is willing to drink coffee, but not tea, now,
never drinks alcoholic beverages, or
always produces a publication after drinking coffee.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.