Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-26T01:51:22.913Z Has data issue: false hasContentIssue false

7 - Configuration Model

from Part III - Models for Complex Networks

Published online by Cambridge University Press:  12 January 2017

Remco van der Hofstad
Affiliation:
Technische Universiteit Eindhoven, The Netherlands
Get access

Summary

In this chapter, we investigate graphs with fixed degrees. Ideally, we would like to investigate uniform random graphs having a prescribed degree sequence, i.e, a degree sequence which is given to us beforehand. An example of such a situation could arise from a real-world network of which we know the degree sequence, and we would be interested in generating a random, or even uniform, graph with precisely the same degrees.

Such a random graph can be created by uniformly matching half-edges, at the expense of possibly creating self-loops and multiple edges, and the result is called the configuration model. The main results in this chapter describe the degree structure in such random graphs, as well as the probability for the random graph to be simple. We also draw connections between the configuration model and the generalized random graphs defined in Chapter 6.

Motivation for the Configuration Model

The configuration model is a model in which the degrees of vertices are fixed beforehand. Such a model is more flexible than the generalized random graph. For example, the generalized random graph always has a positive proportion of vertices of degree 0, 1, 2, etc. (see Exercises 6.15–6.16). In some real-world networks, however, it is natural to investigate graphs where every vertex has at least one or two neighbors. We start by discussing a few examples where random graphs with prescribed degrees appear naturally:

Example 7.1 (Facebook wall posts) In Facebook wall posts, the vertices of the network are Facebook users, and each directed edge represents one post, linking the user writing the post to the user on whose wall the post is written. This gives rise to a (directed) network of a small subset of posts to the walls of other users on Facebook. Since users may write multiple posts on a wall, the network allows multiple edges between pairs of vertices. Since users may write on their own wall, the network contains loops. The degree distribution in log-log scale is displayed in Figure 7.1, and we see that the degree distribution resembles a power law. We see that the degrees are, by definition, all at least 1. Thus, this data set is poorly modeled by the generalized random graph, which always has many vertices of degree 0.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Configuration Model
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Configuration Model
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Configuration Model
  • Remco van der Hofstad, Technische Universiteit Eindhoven, The Netherlands
  • Book: Random Graphs and Complex Networks
  • Online publication: 12 January 2017
  • Chapter DOI: https://doi.org/10.1017/9781316779422.010
Available formats
×