Book contents
- Radial Flow Turbocompressors
- Radial Flow Turbocompressors
- Copyright page
- Dedication
- Contents
- Credits
- Introduction
- Preface
- Acknowledgements
- Conventions and Nomenclature
- 1 Introduction to Radial Flow Turbocompressors
- 2 Energy Transfer
- 3 Equations of State
- 4 Efficiency Definitions for Compressors
- 5 Fluid Mechanics
- 6 Gas Dynamics
- 7 Aerodynamic Loading
- 8 Similarity
- 9 Specific Speed
- 10 Losses and Performance
- 11 Impeller Design
- 12 Diffuser Design
- 13 Casing Component Design
- 14 Geometry Definition
- 15 Throughflow Code for Radial Compressors
- 16 Computational Fluid Dynamics
- 17 Compressor Instability and Control
- 18 Maps and Matching
- 19 Structural Integrity
- 20 Development and Testing
- References
- Index
11 - Impeller Design
Published online by Cambridge University Press: 08 July 2021
- Radial Flow Turbocompressors
- Radial Flow Turbocompressors
- Copyright page
- Dedication
- Contents
- Credits
- Introduction
- Preface
- Acknowledgements
- Conventions and Nomenclature
- 1 Introduction to Radial Flow Turbocompressors
- 2 Energy Transfer
- 3 Equations of State
- 4 Efficiency Definitions for Compressors
- 5 Fluid Mechanics
- 6 Gas Dynamics
- 7 Aerodynamic Loading
- 8 Similarity
- 9 Specific Speed
- 10 Losses and Performance
- 11 Impeller Design
- 12 Diffuser Design
- 13 Casing Component Design
- 14 Geometry Definition
- 15 Throughflow Code for Radial Compressors
- 16 Computational Fluid Dynamics
- 17 Compressor Instability and Control
- 18 Maps and Matching
- 19 Structural Integrity
- 20 Development and Testing
- References
- Index
Summary
Aspects of impeller design are explained taking into account the constraints from mechanical and aerodynamic considerations. A one-dimensional steady flow analysis is used to obtain a general understanding of the effects of the impeller design parameters on the geometry. This analysis provides some clear design guidelines for values of specific nondimensional flow parameters for optimum performance. The effects of the impeller blade inlet design on the inlet relative Mach number are considered together with that of the throat on flow capacity. The effect of the outlet velocity triangle on the work input and degree of reaction is explored. The considerations that lead to the choice of backsweep at the impeller outlet are explained. The steps required to adapt an impeller designed for one task to fulfil other requirements by means of trimming or flow cuts are explained. Guidance on the selection of mixed flow impellers is given. Some important differences are explained between the velocity triangles in radial flow compressor impellers and those in the rotors of centrifugal pumps, axial compressors and radial turbines.
Keywords
- Type
- Chapter
- Information
- Radial Flow TurbocompressorsDesign, Analysis, and Applications, pp. 338 - 404Publisher: Cambridge University PressPrint publication year: 2021