Book contents
- Radial Flow Turbocompressors
- Radial Flow Turbocompressors
- Copyright page
- Dedication
- Contents
- Credits
- Introduction
- Preface
- Acknowledgements
- Conventions and Nomenclature
- 1 Introduction to Radial Flow Turbocompressors
- 2 Energy Transfer
- 3 Equations of State
- 4 Efficiency Definitions for Compressors
- 5 Fluid Mechanics
- 6 Gas Dynamics
- 7 Aerodynamic Loading
- 8 Similarity
- 9 Specific Speed
- 10 Losses and Performance
- 11 Impeller Design
- 12 Diffuser Design
- 13 Casing Component Design
- 14 Geometry Definition
- 15 Throughflow Code for Radial Compressors
- 16 Computational Fluid Dynamics
- 17 Compressor Instability and Control
- 18 Maps and Matching
- 19 Structural Integrity
- 20 Development and Testing
- References
- Index
12 - Diffuser Design
Published online by Cambridge University Press: 08 July 2021
- Radial Flow Turbocompressors
- Radial Flow Turbocompressors
- Copyright page
- Dedication
- Contents
- Credits
- Introduction
- Preface
- Acknowledgements
- Conventions and Nomenclature
- 1 Introduction to Radial Flow Turbocompressors
- 2 Energy Transfer
- 3 Equations of State
- 4 Efficiency Definitions for Compressors
- 5 Fluid Mechanics
- 6 Gas Dynamics
- 7 Aerodynamic Loading
- 8 Similarity
- 9 Specific Speed
- 10 Losses and Performance
- 11 Impeller Design
- 12 Diffuser Design
- 13 Casing Component Design
- 14 Geometry Definition
- 15 Throughflow Code for Radial Compressors
- 16 Computational Fluid Dynamics
- 17 Compressor Instability and Control
- 18 Maps and Matching
- 19 Structural Integrity
- 20 Development and Testing
- References
- Index
Summary
The design of the diffuser system immediately downstream of the impeller is considered. The diffuser transforms the kinetic energy at its inlet into a rise in the static pressure. Centrifugal compressors are usually fitted with either a vaned or a vaneless diffuser leading to a collector. The diffuser meridional channel comprises an annular channel extending radially outwards from the impeller outlet, usually of the same width as the impeller. The simplest diffuser system is a radial vaneless annular channel where the radial velocity component is reduced by the increase in the area of the channel with radius (conservation of mass) and the circumferential velocity component is reduced by the increase in radius in the diffuser (conservation of angular momentum). In a vaned diffuser, of which several types are considered, there is a small vaneless region upstream of the diffuser vanes. The vanes themselves form flow channels designed to decelerate the flow more than is possible in a vaneless diffuser by turning the flow in a more radial direction. The different zones of pressure recovery in vaned diffusers are examined and compared with the equivalent planar diffuser.
Keywords
- Type
- Chapter
- Information
- Radial Flow TurbocompressorsDesign, Analysis, and Applications, pp. 405 - 442Publisher: Cambridge University PressPrint publication year: 2021