Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T18:36:50.861Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  09 September 2021

Peter P. Rohde
Affiliation:
University of Technology, Sydney
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Quantum Internet
The Second Quantum Revolution
, pp. 326 - 334
Publisher: Cambridge University Press
Print publication year: 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achilles, D., Silberhorn, C., Sliwa, C., et al., 2004. Photon number resolving detection using time-multiplexing. Journal of Modern Optics, 51, 1499.CrossRefGoogle Scholar
Aggarwal, D., Brennen, G. K., Lee, T., et al., 2017. Quantum attacks on Bitcoin, and how to protect against them. Ledger, 3. https://doi.org/10.5195/ledger.2018.127Google Scholar
Aharonov, D. and Ben-Or, M. 1997. Fault-tolerant quantum computation with constant error. Proceedings of 29th Annual ACM Symposium on Theory of Computing, 176–188. ACM.Google Scholar
Ahmadi, M., Bruschi, D. E., Sabín, C., et al., 2014. Relativistic quantum metrology: Exploiting relativity to improve quantum measurement technologies. Scientific Reports, 4, 4996.CrossRefGoogle ScholarPubMed
Aichele, T., Lvovsky, A. I. and Schiller, S. 2002. Optical mode characterization of single photons prepared by means of conditional measurements on a biphoton state. European Physics Journal D, 18, 237.CrossRefGoogle Scholar
Arrighi, P. and Salvail, L. 2006. Blind quantum computation. International Journal of Quantum Information, 4, 883.Google Scholar
Aschauer, H., Calsamiglia, J., Hein, M., et al., 2004. Local invariants for multipartite entangled states allowing for a simple entanglement criterion. Quantum Information & Computation, 4, 383.CrossRefGoogle Scholar
Avizienis, A. 1987. The Evolution of Fault-Tolerant Computing. Springer, New York.Google Scholar
Azuma, K., Tamaki, K. and Lo, H. K. 2015. All photonic quantum repeaters. Nature Communications, 6, 6787.Google Scholar
Bacharach, M. 1976. Economics and the Theory of Games. Macmillan, London.CrossRefGoogle Scholar
Balensiefer, S., Kregor-Stickles, L. and Oskin, M. 2005. An evaluation framework and instruction set architecture for ion-trap based quantum micro-architectures. SIGARCH Computer Architecture News, 33(2), 186.Google Scholar
Banaszek, K. and Walmsley, I. 2003. Photon counting with loop detector. Optics Letters, 28, 52.Google Scholar
Barrett, S. D. and Kok, P. 2005. Efficienct high-fidelity quantum computation using matter qubits and linear optics. Physical Review A, 71, 060310(R).Google Scholar
Barrett, S. D., Rohde, P. P. and Stace, T. M. 2010. Scalable quantum computing with atomic ensembles. New Journal of Physics, 12, 093032.Google Scholar
Barz, S., Kashefi, E., Broadbent, A., et al., 2012. Demonstration of blind quantum computing. Science, 335, 303.Google Scholar
Barzanjeh, Sh., Vitali, D., Tombesi, P. and Milburn, G. J. 2011. Entangling optical and microwave cavity modes by means of a nanomechanical resonator. Physical Review A, 84, 042342.CrossRefGoogle Scholar
Benjamin, S. C., Eisert, J. and Stace, T. M. 2005. Optical generation of matter qubit graph states. New Journal of Physics, 7, 194.Google Scholar
Bennett, C. H. 1992. Quantum cryptography using any two nonorthogonal states. Physical Review Letters, 68, 3121.Google Scholar
Bennett, C. H., Bernstein, H. J., Popescu, S., et al., 1996. Concentrating partial entanglement by local operations. Physical Review A, 53, 2046.CrossRefGoogle ScholarPubMed
Bennett, C. H. and Brassard, G. 2014. Quantum cryptography: Public-key distribution and coin tossing. Theoretical Computer Science, 560 (Part 1), 7–11. doi: 10.1016/j.tcs.2014.05.025Google Scholar
Bennett, C. H., Brassard, G., Crepeau, C., et al., 1993. Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Physical Review Letters, 70, 1895.Google Scholar
Bennett, C. H., Brassard, G., Popescu, S., et al., 1996. Purification of noisy entanglement and faithful teleportation via noisy channels. Physical Review Letters, 76, 722.Google Scholar
Bennett, C. H. and DiVincenzo, D. P. 2000. Quantum information and computation. Nature, 404, 247.Google Scholar
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., et al., 1996. Mixed state entanglement and quantum error correction. Physical Review A, 54, 3824.Google Scholar
Bennett, C. H., DiVincenzo, D. P., Smolin, J. A., et al., 1996. Mixed-state entanglement and quantum error correction. Physical Review A, 54, 3824.Google Scholar
Berry, D. W. 2014. High-order quantum algorithm for solving linear differential equations. Journal of Physics A: Mathematics & Theoretical, 47, 105301.CrossRefGoogle Scholar
Blum, S., O’Brien, C., Lauk, N., Bushev, P., et al., 2015. Interfacing microwave qubits and optical photons via spin ensembles. Physical Review A, 91, 033834.Google Scholar
Bochmann, J., Vainsencher, A., Awschalom, D. D., et al., 2013. Nanomechanical coupling between microwave and optical photons. Nature Physics, 9, 712.Google Scholar
Boruvka, O. 1926. About a certain minimal problem. O Prace mor. prirodoved. spol. v Brne III, 3, 37.Google Scholar
Branning, D., Grice, W., Erdmann, R., et al., 2000. Interferometric technique for engineering indistinguishability and entanglement of photon pairs. Physical Review A, 62, 013814.Google Scholar
Brattke, S., Varcoe, B. T. H. and Walther, H. 2001. Generation of photon number states on demand via cavity quantum electrodynamics. Physical Review Letters, 86, 3534.Google Scholar
Bratzik, S., Abruzzo, S., Kampermann, H., et al., 2013. Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret-key rate. Physical Review A, 86, 062335.Google Scholar
Braunstein, S. L. and Mann, A. 1995. Measurement of the Bell operator and quantum teleportation. Physical Review A, 51, R1727.Google Scholar
Brennen, G. K., Rohde, P., Sanders, B. C., et al., 2015. Multi-scale quantum simulation of quantum field theory using wavelets. Physical Review A, 92, 032315.Google Scholar
Briegel, H. J., Dür, W., Cirac, J. I., et al., 1998. Quantum repeaters: The role of imperfect local operations in quantum communication. Physical Review Letters, 81, 5932.Google Scholar
Broadbent, A., Fitzsimons, J. and Kashefi, E. 2009. Universal blind quantum computation. Page 517 of: IEEE Symposium on Foundations of Computer Science (FOCS), Vol. 50. IEEE. doi: 10.1109/FOCS.2009.36Google Scholar
Browne, D. E. and Rudolph, T. 2005. Resource-efficient linear optics quantum computation. Physical Review Letters, 95, 010501.Google Scholar
Brunel, C., Lounis, B., Tamarat, P., et al., 1999. Triggered source of single photons based on controlled single molecule fluorescence. Physical Review Letters, 83, 2722.Google Scholar
Cahill, K. E. and Glauber, R. J. 1969. Density operators and quasiprobability distributions. Physical Review, 177, 177.Google Scholar
Calderbank, A. R. and Shor, P. W. 1996. Good quantum error-correcting codes exist. Physical Review A, 54, 1098.Google Scholar
Campbell, E. T., Fitzsimons, J., Benjamins, S. C., et al., 2007. Adaptive strategies for graph state growth in the presence of monitored errors. Physical Review A, 75, 042303.Google Scholar
Campbell, E. T., Fitzsimons, J., Benjamin, S. C., et al., 2007. Efficient growth of complex graph states via imperfect path erasure. New Journal of Physics, 9, 196.Google Scholar
Childress, L., Taylor, J. M., Sørensen, A. S., et al., 2006. Fault-tolerant quantum communication based on solid-state photon emitters. Physical Review Letters, 96, 070504.Google Scholar
Chou, C. W., de Riedmatten, H., Felinto, D., et al., 2005. Measurement-induced entanglement for excitation stored in remote atomic ensembles. Nature, 438, 828.CrossRefGoogle ScholarPubMed
Chuang, I. L. and Nielsen, M. A. 1997. Prescription for experimental determination of the dynamics of a quantum black box. Journal of Modern Optics, 44, 2455.Google Scholar
Cirac, J. I., Ekert, A. K., Huelga, S. F., et al., 1999. Distributed quantum computation over noisy channels. Physical Review A, 59, 1999.Google Scholar
Cohen-Tannoudji, C., Dupont-Roc, J. and Grynberg, G. 1998. Atom–Photon Interactions: Basic Processes and Applications. 1st ed. Wiley-Interscience, Germany.Google Scholar
Cormen, T. H., Leiserson, C. E., Rivest, R. L., et al., 2009. Introduction to Algorithms. MIT Press, Cambridge, MA.Google Scholar
Dean, J. and Ghemawat, S. 2008. MapReduce: simplified data processing on large clusters. Communications of the ACM, 51, 107.Google Scholar
Deutsch, D. 1985. Quantum theory, the Church-Turing principle and the universal quantum computer. Proceedings of the Royal Society of London A, 400, 97.Google Scholar
Deutsch, D., Ekert, A., Jozsa, R., et al., 1996. Quantum privacy amplification and the security of quantum cryptography over noisy channels. Physical Review Letters, 77, 2818.Google Scholar
Deutsch, D. and Jozsa, R. 1992. Rapid solution of problems by quantum computation. Proceedings of the Royal Society of London A, 439, 553.Google Scholar
Devitt, S. J., Munro, W. J. and Nemoto, K. 2013. Quantum error correction for beginners. Reports on Progress in Physics, 76, 076001.CrossRefGoogle ScholarPubMed
Didier, N., Pugnetti, S., Blanter, Y. M., et al., 2014. Quantum transducer in circuit optomechanics. Solid State Communications, 198, 61.Google Scholar
Dijkstra, E. W. 1959. A note on two problems in connection with graphs. Numerische Mathematik, 1, 269.Google Scholar
Dowling, J. P. 2008. Quantum optical metrology – the lowdown on high-NOON states. Contemporary Physics, 49, 125.Google Scholar
Duan, L.-M., Giedke, G., Cirac, J. I., et al., 2000. Entanglement purification of Gaussian continuous variable quantum states. Physical Review Letters, 84, 4002.Google Scholar
Duan, L.-M., Lukin, M. D., Cirac, J. I., et al., 2001. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413.Google Scholar
Duan, L.-M., Lukin, M. D., Cirac, J. I., et al., 2001. Long-distance quantum communication with atomic ensembles and linear optics. Nature, 414, 413.Google Scholar
Dunjko, V., Kashefi, E. and Leverrier, A. 2012. Blind quantum computing with weak coherent pulses. Physical Review Letters, 108, 200502.Google Scholar
Dür, W. and Briegel, H. J. 2007. Entanglement purification and quantum error correction. Reports on Progress in Physics, 70, 1381.Google Scholar
Dür, W., Briegel, H. J., Cirac, J. I., et al., 1999. Quantum repeaters based on entanglement purification. Physical Review A, 59, 169.CrossRefGoogle Scholar
Einstein, A., Podolsky, B. and Rosen, N. 1935. Can quantum-mechanical description of physical reality be considered complete? Physical Review, 47, 777.Google Scholar
Enk, S., Cirac, J. I. and Zoller, P. 1998. Photonic channels for quantum communication. Science, 279, 205.Google Scholar
Feynman, R. P. 1985. Quantum mechanical computers. Foundations of Physics, 16, 507.Google Scholar
Fishburn, P. C. 1970. Utility Theory for Decision Making. John Wiley & Sons, New York.Google Scholar
Fitch, M. J., Jacobs, B. C., Pittman, T. B., et al., 2003. Photon number resolution using time-multiplexed single-photon detectors. Physical Review A, 68, 043814.Google Scholar
Fowler, A. G., Wang, D. S., Hill, C. D., et al., 2010. Surface code quantum communication. Physical Review Letters, 104, 180503.Google Scholar
Fowler, A. G., Mariantoni, M., Martinis, J. M., et al., 2012. Surface codes: Towards practical large-scale quantum computation. Physical Review A, 86, 032324.Google Scholar
Fredman, M. L. and Tarjan, R. E. 1984. Fibonacci heaps and their uses in improved network optimization algorithms. Proceedings of the 25th IEEE Symposium on the Foundations of Computer Science, 346, 338.Google Scholar
Gács, P. 1983. Reliable computation with cellular automata. Proceedings of the ACM Symposium on Theory of Computing, 15, 32.Google Scholar
Gentry, C. 2009. Fully homomorphic encryption using ideal lattices. Proceedings of the 41st Annual ACM Symposium on Theory of Computing, 41, 169.Google Scholar
Gerry, C. C. and Knight, P. L. 2005. Introductory Quantum Optics. Cambridge University Press, London.Google Scholar
Gilchrist, A., Langford, K., N. and Nielsen, M. A. 2005. Distance measures to compare real and ideal quantum processes. Physical Review A, 71, 062310.Google Scholar
Gimeno-Segovia, M., Shadbolt, P., Browne, D. E., et al., 2015. From three-photon Greenberger-Horne-Zeilinger states to ballistic universal quantum computation. Physical Review Letters, 115(2), 020502.Google Scholar
Gisin, N., Ribordy, G., Tittel, W., et al., 2002. Quantum cryptography. Reviews in Modern Physics, 74, 145.Google Scholar
Gisin, N. and Thew, R. 2007. Quantum communication. Nature Photonics, 1, 165.Google Scholar
Goebel, A. M., Wagenknecht, G., Zhang, Q., et al., 2008. Multistage entanglement swapping. Physical Review Letters, 101, 080403.Google Scholar
Gottesman, D. 1997. Stabilizer Codes and Quantum Error Correction (PhD thesis, Caltech). quant-ph/9705052.Google Scholar
Gottesman, D. and Chuang, I. L. 1999. Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature, 402, 390.Google Scholar
Greenberger, D. M., Horne, M. A. and Zeilinger, A. 1989. Going beyond Bell’s theorem. Page 69–72 of: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe, M. Kafatos, ed. Kluwer Academic, Dordrecht, The Netherlands.Google Scholar
Gross, D., Kieling, K. and Eisert, J. 2006. Potential and limits to cluster state quantum computing using probabilistic gates. Physical Review A, 74, 042343.Google Scholar
Grover, L. K. 1996. A fast quantum mechanical algorithm for database search. Page 212–219 of: Proceedings of the 28th Annual ACM Symposium on Theory of Computing. ACM, Philadelphia. https://doi.org/10.1145/237814.237866Google Scholar
Harrow, A. W., Hassidim, A. and Lloyd, S. 2009. Quantum algorithm for linear systems of equations. Physical Review Letters, 103, 150502.Google Scholar
Hart, P. E., Nilsson, N. J. and Raphael, B. 1968. A formal basis for the heuristic determination of minimum cost paths. IEEE Transactions on Systems, Man, and Cybernetics., 4, 100.Google Scholar
Hill, C. D., Peretz, E., Hile, S. J., co-authors, 2015. A surface code quantum computer in silicon. Science Advances, 1(9).Google Scholar
Holevo, A. S. 1998. The capacity of the quantum channel with general signal states. IEEE Transactions on Information Theory, 44, 269.Google Scholar
Hong, C. K., Ou, Z. Y. and Mandel, L. 1987. Measurement of sub-picosecond time intervals between two photons by interference. Physical Review Letters, 59, 2044.Google Scholar
Hwang, W.-Y. 2003. Quantum key distribution with high loss: Toward global secure communication. Physical Review Letters, 91, 057901.Google Scholar
Imamoğlu, A. 2009. Cavity QED based on collective magnetic dipole coupling: Spin ensembles as hybrid two-level systems. Physical Review letters, 102, 083602.Google Scholar
Jain, N., Stiller, B., Khan, I., et al., 2016. Attacks on practical quantum key distribution systems (and how to prevent them). Contemporary Physics, 57, 366.Google Scholar
Jiang, L., Taylor, J. M., Nemoto, K., et al., 2009. Quantum repeater with encoding. Physical Review A, 79, 032325.Google Scholar
Jones, N. C., van Meter, R., Fowler, A. G., co-authors, 2012. Layered architecture for quantum computing. Physical Review X, 2(3), 031007.Google Scholar
Jordan, S. P., Lee, K. S. M. and Preskill, J. 2012. Quantum algorithms for quantum field theories. Science, 336, 1130.CrossRefGoogle ScholarPubMed
Kaltenbaek, R., Aspelmeyer, M., Jennewein, T., co-authors, 2004. Proof-of-concept experiments for quantum physics in space. Page 17 of: Proceedings of the SPIE, Quantum Communications and Quantum Imaging, Vol. 5161. SPIE. https://doi.org/ 10.1117/12.506979Google Scholar
Kieling, K., Gross, D. and Eisert, J. 2007. Minimal resources for linear optical one-way computing. Journal of the Optical Society of America B, 24(2), 184188.CrossRefGoogle Scholar
Kieling, K., Gross, D. and Eisert, J. 2007. Cluster state preparation using gates operating at arbitrary success probabilities. New Journal of Physics, 9, 200.Google Scholar
Kieling, K., Rudolph, T. and Eisert, J. 2006. Percolation, renormalization, and quantum computing with non-deterministic gates. Physical Review Letters, 99, 130501.Google Scholar
Kimble, H. J. 2008. The quantum internet. Nature, 453, 1023.Google Scholar
Kiraz, A., Atatüre, M. and Imamoğlu, A. 2004. Quantum-dot single-photon sources: Prospects for applications in linear optics quantum-information processing. Physical Review A, 69, 032305.Google Scholar
Kitaev, A. Y. 1997. Quantum computations: Algorithms and error correction. Russian Mathematical Surveys, 52(6), 1191.Google Scholar
Knill, E. 2005. Quantum computing with realistically noisy devices. Nature, 434, 39.Google Scholar
Knill, E. and Laflamme, R. 1997. Theory of quantum error-correcting codes. Physical Review A, 55, 900.Google Scholar
Kurtsiefer, C., Zarda, P., Mayer, S., et al., 2001. The breakdown flash of silicon avalanche photodiodes—Back door for eavesdropper attacks? Journal of Modern Optics, 48, 2039.Google Scholar
Kwiat, P. G., Mattle, K., Weinfurter, H., et al., 1995. New high-intensity source of polarization-entangled photon pairs. Physical Review Letters, 75, 4337.CrossRefGoogle ScholarPubMed
Lekitsch, B., Weidt, S., Fowler, A. G., co-authors, 2017. Blueprint for a microwave trapped ion quantum computer. Science Advances, 3(2).CrossRefGoogle ScholarPubMed
Lloyd, S. 1996. Universal quantum simulators. Science, 273, 1073.Google Scholar
Lloyd, S., Garnerone, S. and Zanardi, P. 2016. Quantum algorithms for topological and geometric analysis of data. Nature Communications, 7, 10138.Google Scholar
Lloyd, S., Mohseni, M. and Rebentrost, P. 2013. Quantum algorithms for supervised and unsupervised machine learning. Preprint, arXiv:1307.0411.Google Scholar
Lo, H.-K., Ma, X. and Chen, K. 2005. Decoy state quantum key distribution. Physical Review Letters, 94, 230504.Google Scholar
Menicucci, N. C., Baragiola, B. Q., Demarie, T. F., et al., 2018. Anonymous broadcasting of classical information with a continuous-variable topological quantum code. Physical Review A, 97, 032345.Google Scholar
Metodiev, T., Cross, A., Thaker, D., co-authors, 2004. Preliminary results on simulating a scalable fault-tolerant ion trap system for quantum computation. In: 3rd Workshop on Non-Silicon Computing (NSC-3), Munich.Google Scholar
Morimae, T., Dunjko, V. and Kashefi, E. 2015. Ground state blind quantum computation on AKLT state. Quantum Information and Computation, 15, 0200.Google Scholar
Morimae, T. and Fujii, K. 2013. Blind topological measurement-based quantum computation. Physical Review A, 87, 050301(R).Google Scholar
Motes, K. R., Dowling, J. P., Gilchrist, A., et al., 2015. Implementing scalable Boson sampling with time-bin encoding: Analysis of loss, mode mismatch, and time jitter. Physical Review A, 92, 052319.Google Scholar
Motes, K. R., Olson, J. P., Rabeaux, E. J., et al., 2015. Linear optical quantum metrology with single photons: Exploiting spontaneously generated entanglement to beat the shot-noise limit. Physical Review Letters, 114, 170802.Google Scholar
Mukai, H., Sakata, K., Devitt, S. J., co-authors, 2020. Pseudo-2D superconducting quantum computing circuit for the surface code: Proposal and preliminary tests. New Journal of Physics, 22(4), 043013.Google Scholar
Munro, W. J., Azuma, K., Tamaki, K., et al., 2015. Inside quantum repeaters. IEEE Journal of Selected Topics in Quantum Electronics, 21, 6400813.Google Scholar
Munro, W. J., Harrison, K. A., Stephens, A. M., et al., 2010. From quantum multiplexing to high-performance quantum networking. Nature Photonics, 4, 792.Google Scholar
Munro, W. J., Van, Meter, Louis, R., S. G. R., et al., 2008. High-bandwidth hybrid quantum repeater. Physical Review Letters, 101, 040502.Google Scholar
Munro, W. J., Stephens, A. M., Devitt, S. J., et al., 2012. Quantum communication without the necessity of quantum memories. Nature Photonics, 6, 777.Google Scholar
Muralidharan, S., Kim, J., Lütkenhaus, N., et al., 2014. Ultrafast and fault-tolerant quantum communication across long distances. Physical Review Letters, 112, 250501.Google Scholar
Muralidharan, S., Li, L., Kim, J., 2015. Optimal architectures for long distance quantum communication. Scientific Reports, 6, 20463.Google Scholar
Nemoto, K., Trupke, M., Devitt, S. J., co-authors, 2014. Photonic architecture for scalable quantum information processing in diamond. Physical Review X, 4(3), 031022.Google Scholar
Nielsen, M. A. 2004. Optical quantum computation using cluster states. Physical Review Letters, 93, 040503.Google Scholar
Nielsen, M. A. 2006. Cluster-state quantum computation. Reviews in Mathematical Physics, 57, 147.Google Scholar
Nielsen, M. A. and Chuang, I. L. 2000. Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, UK.Google Scholar
O’Brien, J. L., Pryde, G. J., Gilchrist, A., et al., 2004. Quantum process tomography of a controlled-NOT gate. Physical Review Letters, 93, 080502.Google Scholar
Oxborrow, M. and Sinclair, A. G. 2005. Single-photon sources. Contemporary Physics, 46, 173.Google Scholar
Pan, J.-W., Gasparoni, S., Ursin, R., et al., 2003. Experimental entanglement purification of arbitrary unknown states. Nature, 423, 417.Google Scholar
Pan, J.-W., Simon, C., Brukner, ˘C., et al., 2001. Entanglement purification for quantum communication. Nature, 410, 1067.Google Scholar
Pirandola, S., Andersen, U. L., Banchi, L., co-authors, 2019. Advances in Quantum Cryptography. arXiv preprint arXiv:1906.01645.Google Scholar
Poundstone, W. 1993. Prisoner’s Dilemma/John von Neumann, Game Theory and thePuzzleoftheBomb. Anchor, Palatine, IL.Google Scholar
Rabl, P., Kolkowitz, S. J., Koppens, F. H. L., et al., 2010. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics, 6, 602.Google Scholar
Raimond, J.-M., Brune, M. and Haroche, S. 2001. Manipulating quantum entanglement with atoms and photons in a cavity. Reviews in Modern Physics, 73, 565.Google Scholar
Ralph, T. C., Hayes, A. and Gilchrist, A. 2005. Loss-tolerant optical qubits. Physical Review Letters, 95, 100501.Google Scholar
Raussendorf, R. and Briegel, H. J. 2001. A one-way quantum computer. Physical Review Letters, 86, 5188.Google Scholar
Raussendorf, R., Browne, D. E. and Briegel, H. J. 2003. Measurement-based quantum computation on cluster states. Physical Review A, 68, 022312.Google Scholar
Reck, M., Zeilinger, A., Bernstein, H. J., et al., 1994. Experimental realization of any discrete unitary operator. Physical Review Letters, 73, 58.Google Scholar
Rivest, R. L., Adleman, L. and Dertouzos, M. L. 1978. On data banks and privacy homomorphisms. Foundations of Secure Computation, 4(11), 169180.Google Scholar
Rivest, R. L., Shamir, A. and Adleman, L. 1978. A method for obtaining digital signatures and public-key cryptosystems. Communications of the ACM, 21, 120.Google Scholar
Rohde, P. P. 2012. Optical quantum computing with photons of arbitrarily low fidelity and purity. Physical Review A, 86, 052321.Google Scholar
Rohde, P. P. 2015. Boson-sampling with photons of arbitrary spectral structure. Physical Review A, 91, 012307.Google Scholar
Rohde, P. P. 2015. A simple scheme for universal linear optics quantum computing with constant experimental complexity using fiber-loops. Physical Review A, 91, 012306.CrossRefGoogle Scholar
Rohde, P. P. and Barrett, S. D. 2007. Strategies for the preparation of large cluster states using non-deterministic gates. New Journal of Physics, 9, 198.Google Scholar
Rohde, P. P., Fitzsimons, J. F. and Gilchrist, A. 2013. The information capacity of a single photon. Physical Review A, 88, 022310.Google Scholar
Rohde, P. P., Helt, L. G., Steel, M. J., et al., 2015. Multiplexed single-photon state preparation using a fibre-loop architecture. Physical Review A, 92, 053829.Google Scholar
Rohde, P. P., Mauerer, W. and Silberhorn, C. 2007. Spectral structure and decompositions of optical states, and their applications. New Journal of Physics, 9, 91.Google Scholar
Rohde, P. P., Pryde, G. J., O’Brien, J. L., et al., 2005. Quantum-gate characterization in an extended Hilbert space. Physical Review A, 72, 032306.Google Scholar
Rohde, P. P. and Ralph, T. C. 2005. Frequency and temporal effects in linear optical quantum computing. Physical Review A, 71, 032320.Google Scholar
Rohde, P. P. and Ralph, T. C. 2006. Error models for mode-mismatch in linear optics quantum computing. Physical Review A, 73, 062312.Google Scholar
Rohde, P. P. and Ralph, T. C. 2011. Time-resolved detection and mode-mismatch in a linear optics quantum gate. New Journal of Physics, 13, 053036.Google Scholar
Rohde, P. P., Ralph, T. C. and Munro, W. J. 2006. Practical limitations in optical entanglement purification. Physical Review A, 73, 030301(R).Google Scholar
Rohde, P. P., Ralph, T. C. and Munro, W. J. 2007. Error tolerance and tradeoffs in loss- and failure-tolerant quantum computing schemes. Physical Review A, 75, 010302(R).CrossRefGoogle Scholar
Rohde, P. P., Ralph, T. C. and Nielsen, M. A. 2005. Optimal photons for quantum information processing. Physical Review A, 72, 052332.Google Scholar
Rohde, P. P., Webb, J. G., Huntington, E. H., et al., 2007. Comparison of architectures for approximating number-resolving photo-detection using non-number-resolving detectors. New Journal of Physics, 9, 233.Google Scholar
Sakurai, J. J. 1994. Modern Quantum Mechanics. Addison-Wesley, Reading, MA.Google Scholar
Sangouard, N., Simon, C., de Riedmatten, H., et al., Quantum repeaters based on atomic ensembles and linear optics. Reviews in Modern Physics, 83, 33.Google Scholar
Santori, C., Pelton, M., Solomon, G., et al., 2001. Triggered single photons from a quantum dot. Physical Review Letters, 86, 1502.Google Scholar
Scarani, V., Bechmann-Pasquinucci, H. Cerf, N. J., et al., 2009. The security of practical quantum key distribution. Reviews in Modern Physics, 81, 1301.Google Scholar
Scheidl, T., Wille, E. and Ursin, R. 2013. Quantum optics experiments using the International Space Station: A proposal. New Journal of Physics, 15, 043008.Google Scholar
Schneier, B. 1996. Applied Cryptography. John Wiley & Sons, Hoboken, NJ.Google Scholar
Schuetz, M. J. A., Kessler, E. M., Giedke, G., et al., 2015. Universal quantum transducers based on surface acoustic waves. Physical Review X, 5, 031031.Google Scholar
Schumacher, B. and Westmoreland, M. D. 1997. Sending classical information via noisy quantum channels. Physical Review A, 56, 131.Google Scholar
Shor, P. W. 1994. Algorithms for quantum computation: discrete logarithms and factoring. Page 124 of: Symposium on the Foundations of Computer Science, Vol. 35. IEEE.Google Scholar
Shor, P. W. 1995. Scheme for reducing decoherence in quantum computer memory. Physical Review A, 52, R2493.Google Scholar
Shumeiko, V. S. 2016. Quantum acousto-optic transducer for superconducting qubits. Physical Review A, 93, 023838.Google Scholar
Stannigel, K., Rabl, P., Sørensen, A. S., et al., 2010. Optomechanical transducers for long-distance quantum communication. Physical Review Letters, 105, 220501.Google Scholar
Stephens, A. M. 2014. Fault-tolerant thresholds for quantum error correction with the surface code. Physical Review A, 89, 022321.Google Scholar
Stephens, A. M., Fowler, A. G. and Hollenberg, L. C. L. 2008. Universal fault-tolerant computation on bilinear nearest neighbor arrays. Quantum Information and Computation, 8, 330.Google Scholar
Stephens, A. M., Huang, J., Nemoto, K., et al., 2013. Hybrid-system approach to fault-tolerant quantum communication. Physical Review A, 87, 052333.Google Scholar
Straffin, P. D. 1993. Game Theory and Strategy. Mathematical Association of America, Washington, DC.Google Scholar
Sugden, R. 2004. The Economics of Rights, Co-operation and Welfare. Palgrave Macmillan, New York.Google Scholar
Svore, K. M., DiVincenzo, D. P. and Terhal, B. M. 2007. Noise threshold for a fault-tolerant two-dimensional lattice architecture. Quantum Informatics and Computation, 7, 297.Google Scholar
Szkopek, T., Boykin, P. O., Fan, H., co-authors, 2006. Threshold error penalty for fault-tolerant computation with nearest neighbour communication. IEEE Transactions on Nanotechnology, 5(1), 42.Google Scholar
Tan, S.-H. and Rohde, P. P. 2019. The resurgence of the linear optics quantum interferometer – Recent advances & applications. Reviews in Physics, 4, 100030.Google Scholar
Tanenbaum, A. S. 2002. Computer Networks. Prentice Hall, Hoboken, NJ.Google Scholar
U’Ren, A. B., Banaszek, K. and Walmsley, I. A. 2003. Photon engineering for quantum information processing. Quantum Information & Computation, 3, 480.Google Scholar
U’Ren, A. B., Silberhorn, C., Banaszek, K., co-authors, 2005. Generation of purestate single-photon wavepackets by conditional preparation based on spontaneous parametric downconversion. Laser Physics, 15, 146.Google Scholar
Van Dijk, M., Gentry, C., Halevi, S., et al., 2010. Fully homomorphic encryption over the integers. Advances in Cryptology – EUROCRYPT, 24. Springer, Berlin.Google Scholar
Van Loock, P., Ladd, T. D., Sanaka, K., et al., 2006. Hybrid quantum repeater using bright coherent light. Physical Review Letters, 96, 240501.Google ScholarPubMed
Van Meter, R. 2014. Quantum Networking. Wiley, Hoboken, NJ.Google Scholar
Vinay, S. E. and Kok, P. 2018. Extended analysis of the Trojan-horse attack in quantum key distribution. Physical Review A, 97, 042335.Google Scholar
von Neumann, J. 1955. Probabilistic logics and the synthesis of reliable organisms from unreliable components. Automata Studies, 43.Google Scholar
von Neumann, J. and Morgenstern, O. 2007. Theory of Games and Economic Behavior. Princeton University Press, Princeton, NJ.Google Scholar
Wallraff, A., Schuster, D. I., Blais, A., co-authors, 2004. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature, 431, 162.Google Scholar
Wang, D. S., Fowler, A. G. and Hollenberg, L. C. L. 2011. Quantum computing with nearest neighbor interactions and error rates over 1%. Physical Review A., 83, 020302(R).Google Scholar
Wang, D. S., Fowler, A. G., Stephens, A. M., et al., 2010. Threshold error rates for the toric and surface codes. Quantum Informatics and Computation, 10, 456.Google Scholar
Yin, J., Cao, Y., Li, Y.-H., co-authors, 2017. Satellite-based entanglement distribution over 1200 kilometers. Science, 356, 1140.Google Scholar
Yin, J., Cao, Y., Yong, H.-L., et al., 2013. Lower bound on the speed of nonlocal correlations without locality and measurement choice loopholes. Physical Review Letters, 110, 260407.Google Scholar
Yoran, N. and Reznik, B. 2003. Deterministic linear optics quantum computation with single photon qubits. Physical Review Letters, 91, 037903.Google Scholar
Zehnder, L. 1891. Ein neuer Interferenzrefraktor [A new interference refractor]. Zeitschrift für Instrumentenkunde, 11, 275. [193]Google Scholar
[194] Zehnder, L. 1892. Über einen Interferenzrefraktor [On an interference refractor]. Zeitschrift für Instrumentenkunde, 12, 89.Google Scholar
[194] Zukowski, M., Zeilinger, , , A., Horne, M. A., et al., 1993 . Event-ready-detectors Bell experiment via entanglement swapping. Physical Review Letters, 71, 4287.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Peter P. Rohde, University of Technology, Sydney
  • Book: The Quantum Internet
  • Online publication: 09 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108868815.068
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Peter P. Rohde, University of Technology, Sydney
  • Book: The Quantum Internet
  • Online publication: 09 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108868815.068
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Peter P. Rohde, University of Technology, Sydney
  • Book: The Quantum Internet
  • Online publication: 09 September 2021
  • Chapter DOI: https://doi.org/10.1017/9781108868815.068
Available formats
×