Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T01:33:24.371Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 April 2019

Rick Durrett
Affiliation:
Duke University, North Carolina
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Probability
Theory and Examples
, pp. 410 - 414
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldous, D. and Diaconis, P. (1986) Shuffling cards and stopping times. Amer. Math. Monthly. 93, 333348CrossRefGoogle Scholar
Andersen, E. S. and Jessen, B. (1984) On the introduction of measures in infinite product spaces. Danske Vid. Selsk. Mat.-Fys. Medd. 25, No. 4Google Scholar
Athreya, K. and Ney, P. (1972) Branching Processes. Springer-Verlag, New YorkCrossRefGoogle Scholar
Athreya, K. and Ney, P. (1978) A new approach to the limit theory of recurrent Markov chains. Trans. AMS. 245, 493501CrossRefGoogle Scholar
Athreya, K., McDonald, D., and Ney, P. (1978) Coupling and the renewal theorem. Amer. Math. Monthly. 85, 809814CrossRefGoogle Scholar
Bachelier, L. (1900) Théorie de la spéculation. Ann. Sci. École Norm. Sup. 17, 2186CrossRefGoogle Scholar
Banach, S. and Tarski, A. (1924) Sur la décomposition des ensembles de points en parties respectivements congruent. Fund. Math. 6, 244277CrossRefGoogle Scholar
Baum, L. E. and Billingsley, P. (1966) Asymptotic distributions for the coupon collector’s problem. Ann. Math. Statist. 36, 18351839CrossRefGoogle Scholar
Benford, F. (1938) The law of anomalous numbers. Proc. Amer. Phil. Soc. 78, 552572Google Scholar
Biggins, J. D. (1977) Chernoff’s theorem in branching random walk. J. Appl. Probab. 14, 630636CrossRefGoogle Scholar
Biggins, J. D. (1978) The asymptotic shape of branching random walk. Adv. Appl. Probab. 10, 6284CrossRefGoogle Scholar
Biggins, J. D. (1979) Growth rates in branching random walk. Z. Warsch. verw. Gebiete. 48, 1734CrossRefGoogle Scholar
Billingsley, P. (1961) The Lindeberg-Lévy theorem for martingales. Proc. AMS. 12, 788792Google Scholar
Billingsley, P. (1979) Probability and Measure. John Wiley & Sons, New YorkGoogle Scholar
Birkhoff, G. D. (1931) Proof of the ergodic theorem. Proc. Nat. Acad. Sci. 17, 656660CrossRefGoogle ScholarPubMed
Blackwell, D. and Freedman, D. (1964) The tail σ -field of a Markov chain and a theorem of Orey. Ann. Math. Statist. 35, 12911295CrossRefGoogle Scholar
Blumenthal, R. M. and Getoor, R. K. (1968) Markov Processes and Their Potential Theory. Academic Press, New YorkGoogle Scholar
Borel, E. (1909) Les probabilités dénombrables et leur applications arithmét- iques. Rend. Circ. Mat. Palermo. 27, 247271CrossRefGoogle Scholar
Breiman, L. (1968) Probability. Addison-Wesley, Reading, MAGoogle Scholar
Chung, K. L. (1974) A Course in Probability Theory, second edition. Academic Press, New York.Google Scholar
Chung, K. L., Erdös, P., and Sirao, T. (1959) On the Lipschitz’s condition for Brownian motion. J. Math. Soc. Japan. 11, 263274CrossRefGoogle Scholar
Chung, K. L. and Fuchs, W. H. J. (1951) On the distribution of values of sums of independent random variables. Memoirs of the AMS, No. 6CrossRefGoogle Scholar
Chung, K. L. and Zhao, Z. (1995) From Brownian Motion to Schrödinger’s Equation. Spinger, New YorkCrossRefGoogle Scholar
Chvátal, V. and Sankoff, D. (1975) Longest common subsequences of two random sequences. J. Appl. Probab. 12, 306315CrossRefGoogle Scholar
Cohen, J., Kesten, H., and Newman, C. (1985) Random Matrices and Their Applications. AMS Contemporary Math. 50, Providence, RIGoogle Scholar
Cox, J. T. and Durrett, R. (1981) Limit theorems for percolation processes with necessary and sufficient conditions. Ann. Probab. 9, 583603CrossRefGoogle Scholar
Davis, B. (1983) On Brownian slow points. Z. Warsch. verw. Gebiete. 64, 359367CrossRefGoogle Scholar
Diaconis, P. and Freedman, D. (1980) Finite exchangeable sequences. Ann. Prob. 8, 745764CrossRefGoogle Scholar
Dieudonné, J. (1948) Sur la théore`me de Lebesgue-Nikodym, II. Ann. Univ. Grenoble. 23, 2553Google Scholar
Donsker, M. (1951) An invariance principle for certain probability limit theorems. Memoirs of the AMS, No. 6Google Scholar
Donsker, M. (1952) Justification and extension of Doob’s heurisitc approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 23, 277281CrossRefGoogle Scholar
Doob, J. L. (1949) A heuristic approach to the Kolmogorov-Smirnov theorems. Ann. Math. Statist. 20, 393403CrossRefGoogle Scholar
Doob, J. L. (1953) Stochastic Processes. John Wiley & Sons, New YorkGoogle Scholar
Dubins, L. E. (1968) On a theorem of Skorkhod. Ann. Math. Statist. 39, 20942097CrossRefGoogle Scholar
Dubins, L. E. and Freedman, D. A. (1965) A sharper form of the Borel-Cantelli lemma and the strong law. Ann. Math. Statist. 36, 800807CrossRefGoogle Scholar
Dubins, L. E. and Freedman, D. A. (1979) Exchangeable processes need not be distributed mixtures of independent and identically distributed random variables. Z. Warsch. verw. Gebiete. 48, 115132CrossRefGoogle Scholar
Dudley, R. M. (1989) Real Analysis and Probability. Wadsworth Pub. Co., Pacific Grove, CAGoogle Scholar
Durrett, R. and Resnick, S. (1978) Functional limit theorems for dependent random variables. Ann. Probab. 6, 829846CrossRefGoogle Scholar
Dvoretsky, A. (1972) Asymptotic normality for sums of dependent random variables. Proc. 6th Berkeley Symp., Vol. II, 513535Google Scholar
Dvoretsky, A. and Erdös, P. (1951) Some problems on random walk in space. Proc. 2nd Berkeley Symp. 353–367Google Scholar
Dvoretsky, A., Erdös, P., and Kakutani, S. (1961) Nonincrease everywhere of the Brownian motion process. Proc. 4th Berkeley Symp., Vol. II, 103116Google Scholar
Dynkin, E. B. (1965) Markov processes. Springer-Verlag, New YorkGoogle Scholar
Dynkin, E. B. and Yushkevich, A. A. (1956) Strong Markov processes. Theor. Probab. Appl. 1, 134139.CrossRefGoogle Scholar
Erdös, P. and Kac, M. (1946) On certain limit theorems of the theory of probability. Bull. AMS. 52, 292302CrossRefGoogle Scholar
Erdös, P. and Kac, M. (1947) On the number of positive sums of independent random variables. Bull. AMS. 53, 10111020CrossRefGoogle Scholar
Etemadi, N. (1981) An elementary proof of the strong law of large numbers. Z. Warsch. verw. Gebiete. 55, 119122CrossRefGoogle Scholar
Ethier, S. N. and Kurtz, T. G. (1986) Markov Processes: Characterization and Convergence. John Wiley & Sons, New York.CrossRefGoogle Scholar
Faden, A. M. (1985) The existence of regular conditional probabilities: necessary and sufficient conditions. Ann. Probab. 13, 288298CrossRefGoogle Scholar
Feller, W. (1946) A limit theorem for random variables with infinite moments. Amer. J. Math. 68, 257262CrossRefGoogle Scholar
Feller, W. (1961) A simple proof of renewal theorems. Comm. Pure Appl. Math. 14, 285293CrossRefGoogle Scholar
Feller, W. (1968) An Introduction to Probability Theory and Its Applications, Vol. I, third edition. John Wiley & Sons, New YorkGoogle Scholar
Feller, W. (1971) An Introduction to Probability Theory and Its Applications, Vol. II, second edition. John Wiley & Sons, New YorkGoogle Scholar
Freedman, D. (1965) Bernard Friedman’s urn. Ann. Math. Statist. 36, 956970CrossRefGoogle Scholar
Freedman, D. (1971a) Brownian Motion and Diffusion. Originally published by Day, Holden, San Francisco, CA. Second edition by Springer-Verlag, New YorkGoogle Scholar
Freedman, D. (1971b) Markov chains. Originally published by Day, Holden, San Francisco, CA. Second edition by Springer-Verlag, New YorkGoogle Scholar
Freedman, D. (1980) A mixture of independent and identically distributed random variables need not admit a regular conditional probability given the exchangeable σ -field. Z. Warsch. verw. Gebiete. 51, 239248CrossRefGoogle Scholar
French, R. M. (1988) The Banach-Tarski theorem. Math. Intelligencer. 10, No. 4, 2128CrossRefGoogle Scholar
Friedman, B. (1949) A simple urn model. Comm. Pure Appl. Math. 2, 5970CrossRefGoogle Scholar
Furstenburg, H. (1970) Random walks in discrete subgroups of Lie Groups. In Advances in Probability edited by Ney, P. E., Marcel Dekker, New YorkGoogle Scholar
Furstenburg, H. and Kesten, H. (1960) Products of random matrices. Ann. Math. Statist. 31, 451469Google Scholar
Garsia, A. (1965) A simple proof of E. Hopf’s maximal ergodic theorem. J. Math. Mech. 14, 381382Google Scholar
Glasser, M. L. and Zucker, I. J. (1977) Extended Watson integrals for the cubic lattice. Proc. Nat. Acad. Sci. 74, 18001801CrossRefGoogle Scholar
Gnedenko, B. V. (1943) Sur la distribution limité du terme maximum d’une série aléatoire. Ann. Math. 44, 423453CrossRefGoogle Scholar
Gnedenko, B. V. and Kolmogorov, A. V. (1954) Limit Distributions for Sums of Independent Random Variables. Addison-Wesley, Reading, MAGoogle Scholar
Gordin, M. I. (1969) The central limit theorem for stationary processes. Soviet Math. Doklady. 10, 11741176Google Scholar
Hall, P. (1982) Rates of Convergence in the Central Limit Theorem. Pitman Pub. Co., Boston, MAGoogle Scholar
Hall, P. and Heyde, C. C. (1976) On a unified approach to the law of the iterated logarithm for martingales. Bull. Austral. Math. Soc. 14, 435447CrossRefGoogle Scholar
Hall, P. and Heyde, C. C. (1980) Martingale Limit Theory and Its Application. Academic Press, New YorkGoogle Scholar
Halmos, P. R. (1950) Measure Theory. Van Nostrand, New YorkCrossRefGoogle Scholar
Hammersley, J. M. (1970) A few seedlings of research. Proc. 6th Berkeley Symp., Vol. I, 345394Google Scholar
Hardy, G. H. and Littlewood, J. E. (1914) Some problems of Diophantine approximation. Acta Math. 37, 155239CrossRefGoogle Scholar
Hardy, G. H. and Wright, E. M. (1959) An Introduction to the Theory of Numbers, fourth edition. Oxford University Press, LondonGoogle Scholar
Harris, T. E. (1956) The existence of stationary measures for certain Markov processes. Proc. 3rd Berkeley Symp., Vol. II, 113124Google Scholar
Hartman, P. and Wintner, A. (1941) On the law of the iterated logarithm. Amer. J. Math. 63, 169176CrossRefGoogle Scholar
Hewitt, E. and Savage, L. J. (1956) Symmetric measures on Cartesian products. Trans. AMS. 80, 470501CrossRefGoogle Scholar
Hewitt, E. and Stromberg, K. (1965) Real and Abstract Analysis. Springer-Verlag, New YorkGoogle Scholar
Heyde, C. C. (1963) On a property of the lognormal distribution. J. Royal. Stat. Soc. B. 29, 392393Google Scholar
Heyde, C. C. (1967) On the influence of moments on the rate of convergence to the normal distribution. Z. Warsch. verw. Gebiete. 8, 1218CrossRefGoogle Scholar
Hodges, J. L., Jr. and Le Cam, L. (1960) The Poisson approximation to the binomial distribution. Ann. Math. Statist. 31, 737740CrossRefGoogle Scholar
Hunt, G. (1956) Some theorems concerning Brownian motion. Trans. AMS. 81, 294319CrossRefGoogle Scholar
Ibragimov, I. A. (1962) Some limit theorems for stationary processes. Theor. Probab. Appl. 7, 349382CrossRefGoogle Scholar
Ibragimov, I. A. (1963) A central limit theorem for a class of dependent random variables. Theor. Probab. Appl. 8, 8389CrossRefGoogle Scholar
Ibragimov, I. A. and Linnik, Y. V. (1971) Independent and Stationary Sequences of Random Variables. Wolters-Noordhoff, GroningenGoogle Scholar
Ishitani, H. (1977) A central limit theorem for the subadditive process and its application to products of random matrices. RIMS, Kyoto. 12, 565575CrossRefGoogle Scholar
Jacod, J. and Shiryaev, A. N., (2003) Limit Theorems for Stochastic Processes Second edition. Springer-Verlag, BerlinCrossRefGoogle Scholar
Itô, K. and McKean, H. P. (1965). Diffusion Processes and Their Sample Paths. Springer-Verlag, New YorkGoogle Scholar
Jacod, J. and Shiryaev, A. N. (1987) Limit Theorems for Stochastic Processes. Springer, New YorkCrossRefGoogle Scholar
Kac, M. (1947a) Random walk and the theory of Brownian motion. Amer. Math. Monthly. 54, 369391CrossRefGoogle Scholar
Kac, M. (1947b) On the notion of recurrence in discrete stochastic processes. Bull. AMS. 53, 10021010CrossRefGoogle Scholar
Kac, M. (1959) Statistical Independence in Probability, Analysis, and Number Theory. Carus Monographs, Math. Assoc. of AmericaCrossRefGoogle Scholar
Katznelson, Y. and Weiss, B. (1982) A simple proof of some ergodic theorems. Israel J. Math. 42, 291296CrossRefGoogle Scholar
Keeler, E. and Spencer, J. (1975) Optimal doubling in backgammon. Operations Research. 23, 10631071CrossRefGoogle Scholar
Kesten, H. (1986) Aspects of first passage percolation. In École d’été de probabilités de Saint-Flour XIV. Lecture Notes in Math 1180, Springer-Verlag, New YorkGoogle Scholar
Kesten, H. (1987) Percolation theory and first passage percolation. Ann. Probab. 15, 12311271CrossRefGoogle Scholar
Kingman, J. F. C. (1968) The ergodic theory of subadditive processes. J. Roy. Stat. Soc. B 30, 499510Google Scholar
Kingman, J. F. C. (1973) Subadditive ergodic theory. Ann. Probab. 1, 883909CrossRefGoogle Scholar
Kingman, J. F. C. (1975) The first birth problem for age dependent branching processes. Ann. Probab. 3, 790801CrossRefGoogle Scholar
Kolmogorov, A. N. and Rozanov, Y. A. (1964) On strong mixing conditions for stationary Gaussian processes. Theor. Probab. Appl. 5, 204208CrossRefGoogle Scholar
Kondo, K. and Hara, T. (1987) Critical exponent of susceptibility for a general class of ferromagnets in d > 4 dimensions. J. Math. Phys. 28, 12061208CrossRefGoogle Scholar
Krengel, U. (1985) Ergodic Theorems. deGruyter, New YorkCrossRefGoogle Scholar
Leventhal, S. (1988) A proof of Liggett’s version of the subadditive ergodic theorem. Proc. AMS. 102, 169173Google Scholar
Lévy, P. (1937) Théorie de lladdition des variables aléatoires. Gauthier -Villars, ParisGoogle Scholar
Liggett, T. M. (1985) An improved subadditive ergodic theorem. Ann. Probab. 13, 12791285CrossRefGoogle Scholar
Liggett, T. M. (2010) Continuous Tiem Markov Processes. An Introduction. American Mathematical Society, Providence, RIGoogle Scholar
Lindenbaum, A. (1926) Contributions à l’étude de l’espace metrique. Fund. Math. 8, 209222Google Scholar
Lindvall, T. (1977) A probabilistic proof of Blackwell’s renewal theorem. Ann. Probab. 5, 482485CrossRefGoogle Scholar
Logan, B. F. and Shepp, L. A. (1977) A variational problem for random Young tableaux. Adv. in Math. 26, 206222CrossRefGoogle Scholar
McKean, H. P. (1969) Stochastic Integrals. Academic Press, New YorkGoogle Scholar
Motoo, M. (1959) Proof of the law of the iterated logarithm through diffusion equation. Ann. Inst. Stat. Math. 10, 2128CrossRefGoogle Scholar
Neveu, J. (1965) Mathematical Foundations of the Calculus of Probabilities. Holden-Day, San Francisco, CAGoogle Scholar
Neveu, J. (1975) Discrete Parameter Martingales. North Holland, AmsterdamGoogle Scholar
Newcomb, S. (1881) Note on the frequency of use of the different digits in natural numbers. Amer. J. Math. 4, 3940CrossRefGoogle Scholar
Ornstein, D. (1969) Random walks. Trans. AMS. 138, 160CrossRefGoogle Scholar
Oseledĕc, V. I. (1968) A multiplicative ergodic theorem. Lyapunov characteristic numbers for synmaical systems. Trans. Moscow Math. Soc. 19, 197231Google Scholar
Paley, R. E. A. C., Wiener, N., and Zygmund, A. (1933) Notes on random functions. Math. Z. 37, 647668CrossRefGoogle Scholar
Pitman, E. J. G. (1956) On derivatives of characteristic functions at the origin. Ann. Math. Statist. 27, 11561160CrossRefGoogle Scholar
Perkins, E. (1983) On the Hausdorff dimension of the Brownian slow points. Z. Warsch. verw. Gebiete. 64, 369399CrossRefGoogle Scholar
Port, S. C. and Stone, C. J. (1969) Potential theory of random walks on abelian groups. Acta Math. 122, 19114CrossRefGoogle Scholar
Port, S. C. and Stone, C. J. (1978) Brownian Motion and Classical Potential Theory. Academic Press, New YorkGoogle Scholar
Ragunathan, M. S. (1979) A proof of Oseledĕc’s multiplicative ergodic theorem. Israel J. Math. 32, 356362CrossRefGoogle Scholar
Raimi, R. (1976) The first digit problem. Amer. Math. Monthly. 83, 521538CrossRefGoogle Scholar
Resnick, S. (1987) Extreme Values, Regular Variation, and Point Processes. Springer-Verlag, New YorkCrossRefGoogle Scholar
Revuz, D. (1984) Markov Chains, second edition. North Holland, AmsterdamGoogle Scholar
Root, D. H. (1969) The existence of certain stopping times on Brownian motion. Ann. Math. Statist. 40, 715718CrossRefGoogle Scholar
Rosenblatt, M. (1956) A central limit theorem and a strong mixing condition. Proc. Nat. Acad. Sci. 42, 4347CrossRefGoogle Scholar
Royden, H. (1988) Real Analysis, third edition. McMillan, New YorkGoogle Scholar
Ruelle, D. (1979) Ergodic theory of differentiable dynamical systems. IHES Pub. Math. 50, 275306Google Scholar
Ryll-Nardzewski, C. (1951) On the ergodic theorems, II. Studia Math. 12, 7479CrossRefGoogle Scholar
Savage, L. J. (1972) The Foundations of Statistics, second edition. Dover, New YorkGoogle Scholar
Scott, D. J. (1973) Central limit theorems for martingales and for processes with stationary independent increments using a Skorokhod representation approach. Adv. Appl. Probab. 5, 119137CrossRefGoogle Scholar
Shepp, L. A. (1964) Recurrent random walks may take arbitrarily large steps. Bull. AMS. 70, 540542CrossRefGoogle Scholar
Sheu, S. (1986) Representing a distribution by stopping Brownian motion: Root’s construction. Bull. Austral. Math. Soc. 34, 427431CrossRefGoogle Scholar
Smirnov, N. V. (1949) Limit distributions for the terms of a variational series. AMS Transl. Series. 1, No. 67Google Scholar
Smythe, R. and Wierman, J. C. (1978) First Passage Percolation on the Square Lattice. Lecture Notes in Math 671, Springer-Verlag, New YorkCrossRefGoogle Scholar
Solovay, R. M. (1970) A model of set theory in which every set of reals is Lebesgue measurable. Ann. Math. 92, 156CrossRefGoogle Scholar
Spitzer, F. (1964) Principles of Random Walk. Van Nostrand, Princeton, NJCrossRefGoogle Scholar
Stein, C. (1987) Approximate Computation of Expectations. IMS Lecture Notes Vol. 7CrossRefGoogle Scholar
Stone, C. J. (1969) On the potential operator for one dimensional recurrent random walks. Trans. AMS. 136, 427445CrossRefGoogle Scholar
Stoyanov, J. (1987) Counterexamples in Probability. John Wiley & Sons, New YorkGoogle Scholar
Strassen, V. (1964) An invariance principle for the law of the iterated logarithm. Z. Warsch. verw. Gebiete. 3, 211226CrossRefGoogle Scholar
Strassen, V. (1965) A converse to the law of the iterated logarithm. Z. Warsch. verw. Gebiete. 4, 265268CrossRefGoogle Scholar
Strassen, V. (1967) Almost sure behavior of the sums of independent random variables and martingales. Proc. 5th Berkeley Symp., Vol. II, 315343Google Scholar
Thorisson, H. (1987) A complete coupling proof of Blackwell’s renewal theorem. Stoch. Proc. Appl. 26, 8797CrossRefGoogle Scholar
van Beek, P. (1972) An application of Fourier methods to the problem of sharpening the Berry-Esseen inequality. Z. Warsch. verw. Gebiete. 23, 187196CrossRefGoogle Scholar
Vershik, A. M. and Kerov, S. V. (1977) Asymptotic behavior of the Plancherel measure of the symmetric group and the limit form of random Young tableau. Dokl. Akad. Nauk SSR 233, 10241027Google Scholar
Wegner, H. (1973) On consistency of probability measures. Z. Warsch. verw. Gebiete. 27, 335338CrossRefGoogle Scholar
Weiss, L. (1955) The stochastic convergence of a function of sample successive differences. Ann. Math. Statist. 26, 532536CrossRefGoogle Scholar
Wiener, N. (1923) Differential space. J. Math. Phys. 2, 131174CrossRefGoogle Scholar
Yosida, K. and Kakutani, S. (1939) Birkhoff’s ergodic theorem and the maximal ergodic theorem. Proc. Imp. Acad. Tokyo 15, 165168Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Rick Durrett, Duke University, North Carolina
  • Book: Probability
  • Online publication: 05 April 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Rick Durrett, Duke University, North Carolina
  • Book: Probability
  • Online publication: 05 April 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Rick Durrett, Duke University, North Carolina
  • Book: Probability
  • Online publication: 05 April 2019
Available formats
×