from Part III - Elements of Statistical Inference
Published online by Cambridge University Press: 22 July 2022
Estimating a proportion is one of the most basic problems in statistics. Although basic, it arises in a number of important real-life situations. Examples include election polls, conducted to estimate the proportion of people that will vote for a particular candidate; quality control, where the proportion of defective items manufactured at a particular plant or assembly line needs to be monitored, and one may resort to statistical inference to avoid having to check every single item; and clinical trials, which are conducted in part to estimate the proportion of people that would benefit (or suffer serious side effects) from receiving a particular treatment. The fundamental model is that of Bernoulli trials. The binomial family of distributions plays a central role. Also discussed are sequential designs, which lead to negative binomial distributions.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.