Book contents
- Principles of Glacier Mechanics
- Reviews
- Principles of Glacier Mechanics
- Copyright page
- Dedication
- Contents
- Preface to the third edition
- Preface to the second edition
- Preface to the first edition
- Physical constants relevant to ice
- Derived SI units and conversion factors
- 1 Why study glaciers?
- 2 Some basic concepts
- 3 Mass balance
- 4 Flow and fracture of a crystalline material
- 5 The velocity field in a glacier
- 6 Temperature distribution in polar ice sheets
- 7 The coupling between a glacier and its bed
- 8 Water flow in and under glaciers: Geomorphic implications
- 9 Stress and deformation
- 10 Stress and velocity distribution in an idealized glacier
- 11 Numerical modeling
- 12 Applications of stress and deformation principles to classical problems
- 13 Ice streams and ice shelves
- 14 Finite strain and the origin of foliation
- 15 Response of glaciers to climate change
- 16 Ice core studies
- Problems
- References
- Index
9 - Stress and deformation
Published online by Cambridge University Press: 20 December 2019
- Principles of Glacier Mechanics
- Reviews
- Principles of Glacier Mechanics
- Copyright page
- Dedication
- Contents
- Preface to the third edition
- Preface to the second edition
- Preface to the first edition
- Physical constants relevant to ice
- Derived SI units and conversion factors
- 1 Why study glaciers?
- 2 Some basic concepts
- 3 Mass balance
- 4 Flow and fracture of a crystalline material
- 5 The velocity field in a glacier
- 6 Temperature distribution in polar ice sheets
- 7 The coupling between a glacier and its bed
- 8 Water flow in and under glaciers: Geomorphic implications
- 9 Stress and deformation
- 10 Stress and velocity distribution in an idealized glacier
- 11 Numerical modeling
- 12 Applications of stress and deformation principles to classical problems
- 13 Ice streams and ice shelves
- 14 Finite strain and the origin of foliation
- 15 Response of glaciers to climate change
- 16 Ice core studies
- Problems
- References
- Index
Summary
At any point in a glacier, there are three normal and six shear stresses.Coordinate axes can be chosen so that the shear stresses vanish. The remaining normal stresses are known as the principal stresses. Certain combinations of the stresses do not vary with the orientation of the coordinate axes. These are known as invariants of the stress tensor. The second invariant is one half the sum of squares of all nine stresses in the tensor. This stress is used in the common flow law for ice, so the deformation rate depends on all the stresses acting, not just on those acting in the direction of the deformation.Balancing forces on an element of ice at a point leads to an equation for the conservation of linear momentum. The strain along a line is defined as the change in length per unit length. There are also three normal and six shear strain rates. Again, axes can be chosen so that the shear strain rates disappear.The remaining normal strain rates are called the principal strain rates.In an isotropic material the principal axes of stress and strain rate coincide. Ice is commonly assumed to be isotropic for purposes of theoretical calculations, although this is clearly not true.
- Type
- Chapter
- Information
- Principles of Glacier Mechanics , pp. 256 - 273Publisher: Cambridge University PressPrint publication year: 2019