Skip to main content Accessibility help
×
Hostname: page-component-788cddb947-kc5xb Total loading time: 0 Render date: 2024-10-18T16:20:37.051Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 May 2014

George Jaroszkiewicz
Affiliation:
University of Nottingham
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel,, N. H. 1829. Précis d'une théorie des fonctions elliptiques. J. Reine Angew. Math., 4, 309–348.Google Scholar
Abers,, E., and Lee, B., W. 1973. Gauge theories. Phys. Rep., 9C(1), 1–141.Google Scholar
Abraham,, R., and Marsden,, J. E. 2008. Foundations of Mechanics. Second edn. Providence, RI: AMS Chelsea Publishing.
Arfken,, G. 1985. Mathematical Methods for Physicists. Third edn. New York: Academic Press Inc.
Aristotle 1930. Physica (The Physics). Oxford: Clarendon Press.
Arthur,, R. 1988. Continuous creation, continuous time: a refutation of the alleged discontinuity of Cartesian time. J. Hist. Phil., 26(3), 349–375.Google Scholar
Barrow,, J. D. 1992. Pi in the Sky.Oxford: Clarendon Press.
Bartholomæus Anglicus 1240. De Proprietatibus Rerum (On the Properties of Things).
Bender,, C. M., Cooper,, F., Gutschick,, V. P., and Nieto, M. M. 1985a. Simple approach to tunneling using the method of finite elements. Phys. Rev. D, 32(6), 1486–1490.Google Scholar
Bender,, C. M., Milton,, K. A., Sharp,, D. H., Simmons., L. M. Jr and Strong,, R. 1985b. Discrete-time quantum mechanics. Phys. Rev. D, 32(6), 1476–1485.Google Scholar
Bender,, C. M., Mead, L. R., and Milton, K. A. 1993. Discrete time quantum mechanics. hep-ph/9305246, 1–52.
Benza, V., and Caldirola, P. 1981. De Sitter microuniverse associated to the electron. Nuovo Cimento, 62A(3), 175–185.Google Scholar
Bishop, E. 1977. Book review of Elementary Calculus, by H. J., Keisler. Bull. Am. Math. Soc., 83, 205–208.Google Scholar
Bjorken, J. D., and Drell, S. D. 1964. Relativistic Quantum Mechanics.New York: McGraw-Hill.
Bjorken, J. D., and Drell, S. D. 1965. Relativistic Quantum Fields. New York: McGraw-Hill Inc.
Blaszczyk, P., Katz, M. G., and Sherry, D. 2013. Ten misconceptions from the history of analysis and their debunking. Foundations Sci., 18, 43–74.Google Scholar
Bohr, N. 1920. Über die Serienspektra der Elemente. Z. Phys., 2(5), 423–478.
Bombelli, L., Lee, J., Meyer, D., and Sorkin, R. 1987. Space-time as a causal set. Phys. Rev. Lett., 59(5), 521–524.Google Scholar
Born, M. 1926. Zur Quantenmechanik der Stoβvorgänge. Z. Phys., 38, 803–827.Google Scholar
Brightwell, G., and Gregory, R. 1991. Structure of random discrete spacetime. Phys. Rev. Lett., 66(3), 260–263.Google Scholar
Brown, L. M. 2005. Feynman's Thesis, A New Approach to Quantum Theory.Singapore: World Scientific.
Brown, R. 1828. A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil. Mag., 4, 161–173.Google Scholar
Bureau International des Poids et Mesures (BIPM) 2006. The International System of Units (SI). Eight edn. Sèvres: BIPM.
Cadzow, J. A. 1970. Discrete calculus of variations. Int. J. Control, 11(3), 393–407.Google Scholar
Caldirola, P. 1978. The chronon in the quantum theory of the electron and the existence of heavy leptons. Nuovo Cimento, 45(4), 549–579.Google Scholar
Candlin, D. J. 1956. On sums over trajactories for systems with Fermi statistics. Nuovo Cimento, 4(2), 231–239.Google Scholar
Casalbuoni, R. 1976a. The classical mechanics for Bose–Fermi systems. Nuovo Cimento A Series ll, 33(3), 389–431.Google Scholar
Casalbuoni, R. 1976b. On the quantization of systems with anticommuting variables. Nuovo Cimento A Series ll, 33(1), 115–125.Google Scholar
Chamseddine, A., and Connes, A. 1996. Universal formula for noncommutative geometry actions: unification of gravity and the standard model. Phys. Rev. Lett., 24, 4868–4871.Google Scholar
Cho, K. H., Ji, J. Y., Kim, S. P., Lee, C. H., and Ryu, J. Y. 1997. Heisenberg-picture approach to the evolution of the scalar fields in an expanding universe. Phys. Rev. D, 56, 4916–4921.Google Scholar
Cohen, I. B. 1999. A Guide to Newton's Principia. Berkeley, CA: University of California Press.
Colosi, D., and Rovelli, C. 2009. What is a particle?Classical Quantum Gravity, 26, 025002 (22 pp.).Google Scholar
Cornell, J. (ed.). 1989. Bubbles, Voids, and Bumps in Time: The New Cosmology.Cambridge: Cambridge University Press.
Cornish, F. H. J. 1984. The hydrogen atom and the four-dimensional harmonic oscillator. J. Phys. A: Math. Gen., 17, 323–327.Google Scholar
Davisson, C., and Germer, L. H. 1927. Diffraction of electrons by a crystal of nickel. Phys. Rev., 6, 705–740.Google Scholar
De Broglie, L. 1924. Recherches sur la théorie des quanta. Ph.D. thesis, Faculty of Sciences at Paris University.
DeWitt, B. S. 1965. Dynamical Theory ofGroups and Fields.London: Blackie and Son Limited.
Dirac, P. A. M. 1925. The fundamental equations of quantum mechanics. Proc. Roy. Soc. A, 109, 642–653.Google Scholar
Dirac, P. A. M. 1928. The quantum theory of the electron. Proc. Roy. Soc. A, 117(778), 610–624.Google Scholar
Dirac, P. A. M. 1933. The Lagrangian in quantum mechanics. Phys. Z. Sowjetunion, 3(1), 64–72.Google Scholar
Dirac, P. A. M. 1938. Classical theory of radiating electrons. Proc. Roy. Soc. A, 167, 148–169.Google Scholar
Dirac, P. A. M. 1958. The Principles of Quantum Mechanics. Oxford: Clarendon Press.
Dirac, P. A. M. 1964. Lectures on Quantum Mechanics.New York: Belfer Graduate School of Science, Yeshiva University.
Dray, T., Manogue, C. A., and Tucker, R. W. 1991. Particle production from signature change. Gen. Rel. Grav., 23(8), 967–971.Google Scholar
Eakins, J. 2004. Classical and Quantum Causality in Quantum Field Theory, or, ‘The Quantum Universe’. Ph.D. thesis, University of Nottingham.
Eakins, J., and Jaroszkiewicz, G. 2003. Factorization and entanglement in quantum systems. J. Phys. A: Math. Gen., 36, 517–526.Google Scholar
Eakins, J., and Jaroszkiewicz, G. 2005. A quantum computational approach to the quantum Universe, Reimer, A. (ed.), New Developments in Quantum Cosmology Research. New York: Nova Science Publishers, Inc., pages 1–51.
Eden, R. J., Landshoff, P. V., Olive, D. I., and Polkinghorne, J. C. 1966. The Analytic S-Matrix. Cambridge: Cambridge University Press.
Einstein, A. 1905a. Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt. Ann. Phys., 17, 132–148. (English Translation: 1965. Concerning an heuristic point of view toward the emission and transformation of light. Am. J. Phys. 33(5), 1-16.)Google Scholar
Einstein, A. 1905b. Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flussigkeiten suspendierten Teilchen. Ann. Phys., 17, 549–560.Google Scholar
Einstein, A. 1913. Letter to Ernst Mach. Reprinted with commentary in Misner, C., Thorne, K., and Wheeler, J., 1973. Gravitation. San Francisco, CA: W. H. Freeman.
Einstein, A. 1915. Die Feldgleichungen der Gravitation. Sitzungsber. Preuß. Akad. Wiss. Berlin, 844–847.Google Scholar
Encyclopædia Britannica 1993. Time. In Encyclopædia Britannica, 15th edn, Vol. 28. London: Encyclopædia Britannica, Inc., pages 662–673.
Encyclopædia Britannica. 2000. CD Rom edn. britannica.co.uk.
Farias, R. H. A., and Recami, E. 2010. Introduction of a quantum of time (“chronon”) and its consequences for quantum mechanics. Adv. Imaging Electron Phys., 163, 33–115.Google Scholar
Fermi, E. 1926. Sulla quantizzazione del gas perfetto monoatomico. Rend. Lincei, 3, 145–149. (English translation by A. Zannoni: On the quantization of the monoatomic ideal gas. arXiv:cond-mat/9912229.)Google Scholar
Feynman, R. P. 1948. Space-time approach to non-relativistic quantum mechanics. Rev. Mod. Phys., 20(2), 367–387.Google Scholar
Feynman, R. P. 1982. Simulating physics with computers. Int. J. Theor. Phys., 21(6/7), 467–488.Google Scholar
Feynman, R. P., and Hibbs, A. R. 1965. Quantum Mechanics and Path Integrals. New York: McGraw-Hill.
Finkelstein, D. 1969. Space-time code. Phys. Rev., 184(4), 1969–1971.Google Scholar
Finkelstein, D. 1972a. Space-time code. II. Phys. Rev. D, 5(2), 320–328.Google Scholar
Finkelstein, D. 1972b. Space-time code. III. Phys. Rev. D, 5(12), 2923–2931.Google Scholar
Finkelstein, D. 1974. Space-time code. IV. Phys. Rev. D, 9(8), 2219–2231.Google Scholar
Finkelstein, D., Frye, G., and Susskind, L. 1974. Space-time code. V. Phys. Rev. D, 9(8), 2231–2236.Google Scholar
FitzGerald, G. F. 1889. The ether and the Earth's atmosphere. Science, 13, 390.Google Scholar
Fredkin, E. 1990. Digital mechanics: an informational process based on reversible universal CA. Physica, D45, 254–270.Google Scholar
Fredkin, E. 2001. A physicist's model of computation. Digital Mechanics, 11 November, 1–13.Google Scholar
Fredkin, E., and Toffoli, T. 1982. Conservative logic. Int. J. Theor. Phys., 21(3-4), 219–253.Google Scholar
Gagnon, P. 2012. Is the moon full? Just ask the LHC operators. http://www.quantumdiaries.org/2012/06/07/is-the-moon-full-just-ask-the-lhc-operators/.
Galapon, E. A. 2002. Pauli's theorem and quantum canonical pairs: the consistency of a bounded, self-adjoint time operator canonically conjugate to a Hamiltonian with non-empty point spectrum. Proc. R. Soc. Lond. A, 458, 451–472.Google Scholar
Gardner, M. 1970. The fantastic combinations of John Conway's new solitaire game “life”. Scient. Am., 223, 120–123.Google Scholar
Gasiorowicz, S. 1967. Elementary Particle Physics. New York: John Wiley and Sons.
Gelfand, I. M., and Shilov, G. E. 1964. Generalised Functions. New York: Academic Press.
Gerlach, W., and Stern, O. 1922a. Der experimentelle Nachweis des magnetischen Moments des SilberatomsZ. Phys., 8, 110–111.Google Scholar
Gerlach, W., and Stern, O. 1922b. Der experimentelle Nachweis der Richtungs-quantelung im Magnetfeld. Z. Phys., 9, 349–355.Google Scholar
Gödel, K. 1949. An example of a new type of cosmological solutions of Einstein's field equations of gravity. Rev. Mod. Phys., 21(3), 447–450.Google Scholar
Goldstein, H. 1964. Classical Mechanics. New York: Addison-Wesley.
Goldstein, H., Poole, C., and Safko, J. 2002. Classical Mechanics. Third edn. New York: Addison-Wesley.
Hamermesh, M. 1962. Group Theory and Its Applications to Physical Problems. New York: Addison-Wesley.
Hartley, L. P. 1953. The Go-Between. London: Hamish Hamilton.
Heisenberg, W. 1925. Über quantentheoretische Umdeutung kinematischer und mechanischer Beziehungen. Z. Phys. A, 33(1), 879–893.Google Scholar
Heisenberg, W. 1927. Über den anschaulichen Inhalt der quantentheoretischen Kine-matik und Mechanik. Z. Phys, 43, 172–198. (Reprinted English translation: The physical content of quantum kinematics and mechanics, in Wheeler, J. A., and Zurek, W. H. (eds.) 1983. Quantum Theory of Measurement. Princeton, NJ: Princeton University Press.)Google Scholar
Hilbert, D. 1915. Die Grundlagen der Physik. Nachr. Königl. Gesell. Wiss. Göttingen, Math.-Phys., 3, 395–407.Google Scholar
Hildebrandt, S. 2012. Mountains are younger than we think. Science Nordic. Available online at sciencenordic.com.Google Scholar
Howson, A. G. 1972. A Handbook of Terms Used in Algebra and Analysis. Cambridge: Cambridge University Press.
Ikeda, M., and Maeda, S. 1978. On symmetries in a discrete model of mechanical systems. Math. Japonica, 23(2), 231–244.Google Scholar
Jackson, F. H. 1910. On q-definite integrals. Q. J. Pure Appl. Math., 41, 193–203.Google Scholar
Jaroszkiewicz, G. 1994a. Conserved quantities in classical and quantised discrete time systems. Nottingham University Mathematics Department preprint. (Talk given at International Workshop on Finite dimensional Integrable systems, Dubna, Russia, 1994.)
Jaroszkiewicz, G. 1994b. A q-ball simulation of bag scattering. J. Phys. G: Nucl. Part. Phys., 21, 501–516.Google Scholar
Jaroszkiewicz, G. A. 1995a. Deformed mechanics and the discrete time quantised anharmonic oscillator, in Lukierski, J., Popowicz, Z., and Sobczyk, J. (eds.), Proceedings of XXX Karpacz Winter School of Theoretical Physics Poland, on Quantum Groups, Formalism and Applications, Wrocław, 1994. Warsaw: Wydawnictwo Naukowe PWN.
Jaroszkiewicz, G. 1995b. Hilbert space condition on conserved quantities in second-order discrete time classical mechanics. J. Phys. A: Math. Gen., 28, L197–L199.Google Scholar
Jaroszkiewicz, G. 1999. Discrete spacetime: classical causality, prediction, retrodiction and the mathematical arrow of time. (Talk at First Interdisciplinary Workshop on Studies on the Structure of Time: from Physics to Psycho(patho)logy, Palermo, (1999).)
Jaroszkiewicz, G. 2002. Analysis of the Relationship Between Real and Imaginary Time in Physics. Dordrecht: Kluwer Academic Publishers.
Jaroszkiewicz, G. 2008. Quantized detector networks: a review of recent developments. Int. J. Mod. Phys. B, 22(3), 123–188.Google Scholar
Jaroszkiewicz, G. 2010. Towards a dynamical theory of observation. Proc. Roy. Soc. A, 466(2124), 3715–3739.Google Scholar
Jaroszkiewicz, G., and Nikolaev, V. 2001. Temporal discretization of the Skyrme model. arXiv:hep-th/0110052, 1–12.
Jaroszkiewicz, G., and Norton, K. 1997a. Principles of discrete time mechanics: I. Particle systems. J. Phys. A: Math. Gen., 30(9), 3115–3144.Google Scholar
Jaroszkiewicz, G., and Norton, K. 1997b. Principles of discrete time mechanics: II. Classical field theory. J. of Phys. A: Math. Gen., 30(9), 3145–3163.Google Scholar
Jordan, P., and Wigner, E. P. 1928. Uber das Paulische Aquivalenzverbot. Z. Phys., 47, 631–651.Google Scholar
Keisler, H. J. 2012. Elementary Calculus: An Elementary Approach. (available online).
Kennard, E. H. 1927. Zur Quantenmechanik einfacher Bewegungstypen. Z. Phys., 44(4-5), 326–352.Google Scholar
Klimek, M. 1993. Extension of q-deformed analysis and q-deformed models of classical mechanics. J. Phys. A: Math. Gen., 26, 955–967.Google Scholar
Klimek, M. 1996. The conservation laws and integrals of motion for a certain class of equations in discrete models. J. Phys. A: Math. Gen., 29, 1747–1758.Google Scholar
Koke, S., Grebing, C., Frei, H., et al. 2010. Direct frequency comb synthesis with arbitrary offset and shot-noise-limited phase noise. Nature Photonics, 4, 463–465.Google Scholar
Kowalczynski, J. K. 2000. Can we detect tachyons now? Acta Phys. Slovaca, 50, 381–395.Google Scholar
Kowalski, K. 1994. Methods of Hilbert Spaces in the Theory of Nonlinear Dynamical Systems. Singapore: World Scientific.
Lee, T. D. 1983. Can time be a discrete dynamical variable?Phys. Lett. B, 122(3-4), 217–220.Google Scholar
Leech, J. W. 1965. Classical Mechanics. London: Methuen and Co. Ltd.
Lehmann, H., Symanzik, K., and Zimmermann, W. 1955. Zur Formulierung quantisierter Feldtheorien. Nuovo Cimento, 1(1), 205–225.Google Scholar
Levi, R. 1927. Theorie de l'action universelle et discontinue. J. Phys. Radium, 8, 182–198.
Lewis, H. R., and Riesenfeld, W. B. 1969. An exact quantum theory of the time-dependent harmonic oscillator and of a charged particle in a time-dependent electromagnetic field. J. Math. Phys, 10, 1458–1473.Google Scholar
Li, A., and Richardson, M. 2009. The speed and lifetime of cosmic-ray muons. MIT Department of Physics, 1–5 (available online).Google Scholar
Logan, J. D. 1973. First integrals in the discrete variational calculus. Aequat. Math., 9, 210–220.Google Scholar
Lukierski, J., Nowicki, A., and Ruegg, H. 1992. New quantum Poincare algebra and kappa-deformed field theory. Phys. Lett., 293B, 344–352.Google Scholar
Mach, E. 1912. Die Mechanik in ihrer Entwicklung, historisch-kritisch dargestellt. (English translation by T. J., McCormack, 1934. The Science of Mechanics. La Salle, IL: Open Court.)
Maeda, S. 1981. Extension of discrete Noether theorem. Math. Japonica, 26(1), 85–90.Google Scholar
Maimonides, M. 1190. The Guide for the Perplexed. London: George Routledge, (Translated by M. Freidlander (1904).)
Markopoulou, F. 2000. Quantum causal histories. Class. Quantum Gravity. 17, 2059–2072.Google Scholar
Marsden, J. E., and West, M. 2001. Discrete mechanics and variational integrators. Acta Numer., 1–158.Google Scholar
Martin, J. L. 1959a. The Feynman principle for a Fermi system. Proc.Roy.Soc.A, 251, 543–549.Google Scholar
Martin, J. L. 1959b. Generalized classical dynamics and the “classical analogue” of a Fermi oscillator. Proc. Roy. Soc. A, 251, 536–542.Google Scholar
McAllister, R. W., and Hofstadter, R. 1956. Elastic scattering of 188 MeV electrons from proton and the alpha particle. Phys. Rev., 102, 851–856.Google Scholar
Meschini, D. 2006. Planck-scale physics: facts and belief. Foundations Sci., 11, 1233–1821.Google Scholar
Minkowski, H. 1908. Space and time. (A translation of an address delivered at the 80th Assembly of German Natural Scientists and Physicians, at Cologne, 21 September), in Lorentz, H. A., Einstein, A., Minkowski, H., and Weyl, H.The Principle of Relativity: A Collection of Original Memoirs on the Special and General Theory of Relativity (1952). New York: Dover Publications, Inc.
Minsky, M. 1982. Cellular vacuum. Int. J. Theor. Phys., 21(6/7), 537–551.Google Scholar
Mir-Kasimov, R. M. 1991. On the principle of gauge invariance in field theory with curved momentum space. Phys. Lett. B, 259(1–2), 79–83.Google Scholar
Moser, J., and Veselov, A. P. 1991. Discrete versions of some classical integrable systems and factorization of matrix polynomials. Commun. Math. Phys., 139, 217–243.Google Scholar
Muga, J. G., Sala Mayato, R., and Egusquiza, I. L. (eds.). 2008. Time in Quantum Mechanics. Second edn. Berlin: Springer.
Newton, I. 1687. The Principia (Philosophiae Naturalis Principia Mathematica). New translation by I. B., Cohen and Anne, Whitman, Berkeley, CA: University of California Press (1999).
Noether, E. 1918. Invariante Variationsprobleme. Nachr. Konigl. Gesell. Wiss. Gottingen, Math.-Phys., 235–257.Google Scholar
Norton, K., and Jaroszkiewicz, G. 1998a. Principles of discrete time mechanics: III. Quantum field theory. J. Phys. A: Math. Gen., 31(3), 977–1000.Google Scholar
Norton, K., and Jaroszkiewicz, G. 1998b. Principles of discrete time mechanics: IV. The Dirac equation, particles and oscillons. J. Phys. A: Math. Gen., 31(3), 1001–1023.Google Scholar
Oney, S. 2007. The Jackson integral, http://www.stephenoney.com/papers/JacksonIntegral.pdf.
Pauli, W. 1925. Uber den Einfluß der Geschwindigkeitsabhängigkeit der Elektronen-masse auf den Zeemaneffekt. Z. Phys., 31, 373–385.Google Scholar
Pauli, W. 1933. Die allgemeinen Prinzipien der Wellenmechanik. Berlin: Springer.
Pauli, W. 1946. Exclusion principle and quantum mechanics. Nobel Lecture (available online).
Peierls, R. E. 1952. The commutation laws of relativistic field theory. Proc. Roy. Soc. A, 214, 143–157.Google Scholar
Peres, A. 1993. Quantum Theory: Concepts and Methods. Dordrecht: Kluwer Academic Publishers.
Pinney, E. 1958. Ordinary Difference-Differential Equations. Berkeley, CA: University of California Press.
Planck, M. 1900. Über eine Verbesserung der Wienschen Spektralgleichung Verhandl. Deutsch. Phys. Gesell., 2, 202–204.Google Scholar
Planck, M. 1901. Über das Gesetz der Energieverteilung im Normalspektrum. Ann. Phys., 309(3), 553–563.Google Scholar
Poincare, H. 1890. Sur le probleme des trois corps et les equations de la dynamique. Acta Math., 13, 1–270.Google Scholar
Price, H. 1997. Time's Arrow. Oxford: Oxford Üniversity Press.
Rabei, E., Ajlouni, A., and Ghassib, H. 2006. Quantization of Brownian Motion. Int. J. Theor. Phys., 45(9), 1613–1623.Google Scholar
Regge, T. 1961. General relativity without coordinates. Nuovo Cimento, 19(3), 558–571.Google Scholar
Reichenbach, H. 1958. The Philosophy of Time and Space. New York: Dover Publications.
Requardt, M. 1999. Space-time as an orderparameter manifold in random networks and the emergence of physical points. gr-qc/99023031, 1–40.
Ridout, D. P., and Sorkin, R. D. 2000. A classical sequential growth dynamics for causal sets. Phys. Rev. D, 61, 024002.Google Scholar
Rindler, W. 1969. Essential Relativity. New York: Van Nostrand Reinhold Company.
Robinson, A. 1966. Non-standard Analysis. Amsterdam: North-Holland Publishing Co.
Roman, P. 1969. Introduction to Quantum Field Theory. New York: John Wiley and Sons, Inc.
Rovelli, C. 1996. Relational quantum mechanics. Int. J. Theor. Phys., 35, 1637–1678.Google Scholar
Rudin, W. 1964. Principles of Mathematical Analysis. New York: McGraw-Hill Book Company.
Sambursky, S. 1959. Physics of the Stoics. London: Routledge and Kegan Paul.
Scarani, V., Tittel, W., Zbinden, H., and Gisin, N. 2000. The speed of quantum information and the preferred frame: analysis of experimental data. Phys. Lett. A, 276, 1–7.Google Scholar
Schneider, D. P., Hell, P. B., Richards, G. T., et al. 2007. The Sloan Digital Sky Survey Quasar Catalog IV. Fifth data release. Astron. J., 134, 102–117.Google Scholar
Schrödinger, E. 1926. Quantisierung als Eigenwertproblem (erste Mitteilung). Ann. Phys., 79, 361–376.Google Scholar
Schutz, B. 1980. Geometrical Methods of Mathematical Physics. Cambridge: Cambridge Üniversity Press.
Schwinger, J. 1959. Field theory commutators. Phys. Rev. Lett., 3(6), 296–297.Google Scholar
Schwinger, J. 1963. Gauge theories of vector particles, in Theoretical Physics (Trieste Seminar 1962). Vienna: IAEA, pages 89–134.
Schwinger, J. 1965. Relativistic quantum field theory. Nobel Prize Lecture, 1–13 (available online).
Schwinger, J. 1969. Particles and Sources. New York: Gordon and Breach.
Secada, J. E. K. 1990. Descartes on time and causality. Philos. Rev., 99(1), 45–72.Google Scholar
Skyrme, T. H. 1961. A non-linear field theory. Proc. Roy. Soc. A, 260, 127–138.Google Scholar
Smolin, L. 2013. Time Reborn: From the Crisis of Physics to the Future of the Universe. London: Allen Lane.
Smoluchowski, M. 1906. Zur kinetischen Theorie der Brownschen Molekularbewegung und der Suspensionen. Ann. Phys., 21, 756–780.Google Scholar
Snyder, H. S. 1947a. The electromagnetic field in quantized space-time. Phys. Rev., 72(1), 68–71.Google Scholar
Snyder, H. S. 1947b. Quantized space-time. Phys. Rev., 71(1), 38–41.Google Scholar
Spiegel, M. R. 1965. Laplace Transforms. New York: McGraw-Hill Book Company.
Stein, E., and Shakarchi, R. 2003. Fourier Analysis: An Introduction. Princeton, NJ: Princeton Üniversity Press.
Stern, A., and Desbrun, M. 2006. Discrete geometric mechanics for variational integrators, Proceedings of in SIGGRAPH '06. New York: ACM, Pages 75–80.
Streater, R. F., and Wightman, A. S. 1964. PCT, Spin and Statistics, and All That. New York: W. A. Benjamin, Inc.
Stueckelberg, E. C. G. 1941. Remarque aproposdelacreation de paires de particules en theorie de la relativite. Helv. Phys. Acta, 14, 588–594.Google Scholar
Sudarshan, E. C. G., and Mukunda, N. 1983. Classical Dynamics: A Modern Perspective. Malabar, FL: Robert E. Krieger Publishing Company.
Susskind, L. 1995. The world as a hologram. J. Math. Phys., 36(11), 6377–6396.Google Scholar
't Hooft, G. 1993. Dimensional reduction in quantum gravity. arXiv:gr-qc/9310026, 1–13.
Tapia, V. 1988. Second order field theory and nonstandard Lagrangians. Nuovo Cimento B, 101, 183–196.Google Scholar
Taylor, J. G. (ed.) 1987. Tributes to Paul Dirac, Cambridge, 1985. Bristol: Adom Hilger.
Tegmark, M. 1997. On the dimensionality of spacetime. Class. Quantum Gravity., 14, L69–L75.Google Scholar
Tifft, W. G. 1996. Three-dimensional quantized time in cosmology. Astrophys. Space Sci., 244, 187–210.Google Scholar
Tonomura, A., Endo, J., Matsuda, T., Kawasaki, T., and Ezawa, H. 1989. Demonstration of single-electron buildup of an interference pattern. Am. J. Phys., 57(2), 117–120.Google Scholar
TOTEM Collaboration 2012. Luminosity-independent measurements of total, elastic and inelastic cross-sections at s = 7 TeV. Preprint CERN-PH-EP-2012-353, 1–7.
Weiss, P. 1936. On the quantization of a theory arising from a variational principle for multiple integrals with application to Born's electrodynamics. Proc. Roy. Soc. A, 156, 192–220.Google Scholar
Weiss, P. 1938. Proc. Roy. Soc. A, 169, 102–119.
Wells, H. G. 1895. The Time Machine. London: Willian Heinemann.
Wheeler, J. A. 1979. From the Big Bang to the Big Crunch. Cosmic Search Mag., 1 (4). Interview with J. A. Wheeler (available online).Google Scholar
Whitrow, G. J. 1980. The Natural Philosophy of Time. Second edn. Oxford: Clarendon Press.
WMAP 2013. Wilkinson Microwave Anisotropy Probe empirical results. http://lambda.gsfc.nasa.gov/product/map/current/parameters.cfm.
Wolfram, S. 1986. Theory and Applications of Cellular Automata. Singapore: World Scientific.
Yang, C. N. 1947. On quantized space-time. Phys. Rev., 72, 874.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.036
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.036
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • George Jaroszkiewicz, University of Nottingham
  • Book: Principles of Discrete Time Mechanics
  • Online publication: 05 May 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139525381.036
Available formats
×