Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-13T10:43:09.509Z Has data issue: false hasContentIssue false

Phosphorylation of the plasma membrane proton pump

Published online by Cambridge University Press:  06 July 2010

N. H. Battey
Affiliation:
University of Reading
H. G. Dickinson
Affiliation:
University of Oxford
A. M. Hetherington
Affiliation:
Lancaster University
Get access

Summary

Introduction

The plasma membrane proton pump (H+-ATPase) is the primary means by which metabolic energy is coupled to solute transport in plants and fungi. In animal cells, the plasma membrane sodium pump (Na+,K+-ATPase) plays a similar role. Thus, animal cells utilise sodium-coupled carriers for solute movement, whereas in plants and fungi these carriers are proton-coupled. Electrophysiological measurements indicate that in actively transporting cells, such as those of plant root hairs or rapidly dividing fungi, the proton pump may be the single greatest consumer of cellular ATP (Felle, 1982). The reliance of plants and fungi on the everpresent proton, and their rather large resting electric potential (−160 to −240 mV, interior negative), may account for their ability to survive in media with little nutritional value. These organisms are capable of scavenging low concentrations of nutrients; the proton pump is essential for this process. Genetic disruption experiments with a gene encoding the plasma membrane proton pump of yeast has provided conclusive evidence that this enzyme is essential for normal growth. The enzyme contains a single polypeptide of ca. Mr=100000 with conserved sequences and topology that place it within the P-type family of ion pumps (Sussman & Harper, 1989). Other members of this family include the animal plasma membrane Na+,K+-ATPase and Ca2+-ATPase.

Most higher plant cells grow at a much slower rate than laboratorygrown yeast. It seems likely that, in place of a rapid doubling time, plants emphasise a precise regulation of cellular growth rates, to ensure that the tissues and organs of this complex multicellular eukaryote form and develop in an orderly fashion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×