Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-27T22:36:39.100Z Has data issue: false hasContentIssue false

7 - Monitoring and detecting translocations using genetic data

from Molecular approaches and applications

Published online by Cambridge University Press:  05 July 2015

Giorgio Bertorelle
Affiliation:
Università degli Studi di Ferrara, Italy
Michael W. Bruford
Affiliation:
Cardiff University
Heidi C. Hauffe
Affiliation:
Edmund Mach Foundation, Trento, Italy
Annapaolo Rizzoli
Affiliation:
Edmund Mach Foundation, Trento, Italy
Cristiano Vernesi
Affiliation:
Edmund Mach Foundation, Trento, Italy
Giorgio Bertorelle
Affiliation:
University of Ferrara
Chiara Papetti
Affiliation:
University of Padova
Heidi C. Hauffe
Affiliation:
Research and Innovation Centre
Luigi Boitani
Affiliation:
University of Rome
Get access

Summary

Restocking is a common procedure for artificially increasing the population size of fish and game species in a particular geographical area. A similar intervention, which entails the (re)introduction of individuals from a source population (natural or captive) to a target area, is an important tool for ecosystem restoration, and is often essential to the recovery or rescue of endangered species or populations (Griffith et al. 1989; Frankham et al. 2002). In both cases, the principal aim of these so-called translocations is to establish stable and self-sustaining populations, taking care to preserve the original genetic structure and ecosystem dynamics of the particular species, while avoiding interference with natural evolutionary processes. But how can this goal be achieved in practice?

From an evolutionary and genetic perspective, these primary goals can be said to be attained when the introduced animals are successfully reproducing in the target environment, when negative selection pressures due to the effects of inbreeding or out-breeding depression are negligible, and when evolutionary potential is maintained (Moritz 1999; Frankham et al. 2002; Hufford and Mazer 2003; Tallmon et al. 2004). The challenge is to develop specific translocation plans which guarantee the achievement of all these objectives, and monitor the success of their implementation. For example, selecting animals or groups of animals appropriately adapted to a target environment is only possible by conducting a costly and long-term preliminary phase of fitness analysis. Similarly, the effects of inbreeding or out-breeding depression on the fitness of individuals in a translocated population can go undetected for extended periods of time. As this chapter will discuss, one solution to this dilemma is offered by the analysis of genetic markers; in fact, theoretical population and evolutionary genetics, together with empirical evidence suggest that levels and patterns of genetic variation within and between groups can be used, integrated with ecological studies, to plan and monitor translocations.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×