Skip to main content Accessibility help
×
Hostname: page-component-f554764f5-wjqwx Total loading time: 0 Render date: 2025-04-22T14:21:57.555Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  13 March 2025

Masoud Akbarzadeh
Affiliation:
University of Pennsylvania
Get access
Type
Chapter
Information
Polyhedral Graphical Statics
For Funicular Structural Form Finding
, pp. 531 - 547
Publisher: Cambridge University Press
Print publication year: 2025

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Book purchase

Temporarily unavailable

References

Hegemier, G. and Prager, W., “On Michell trusses,” International Journal of Mechanical Sciences, vol. 11, no. 2, pp. 209215, 1969.CrossRefGoogle Scholar
Michell, A. G. M., “Lviii: The limits of economy of material in frame-structures,” The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, vol. 8, no. 47, pp. 589597, 1904.CrossRefGoogle Scholar
Baker, W. F., Beghini, L. L., Mazurek, A., Carrion, J., and Beghini, A., “Maxwell’s reciprocal diagrams and discrete michell frames,” Structural and Multidisciplinary Optimization, vol. 48, pp. 267277, 2013.CrossRefGoogle Scholar
Timoshenko, S., History of Strength of Materials: With a Brief Account of the History of Theory of Elasticity and Theory of Structures. Lowell, MA: Courier Corporation, 1983.Google Scholar
Rankine, M., “Principle of the equilibrium of polyhedral frames,” Philosophical Magazine, vol. 27, no. 180, p. 92, 1864.Google Scholar
Cruise, R., “The 300m Eiffel Tower,” Construction History, vol. 35, no. 2, pp. 4366, 2020.Google Scholar
Eaton, L. K., “Hardy Cross and the ‘moment distribution method’,” Nexus Network Journal, vol. 3, no. 2, pp. 1524, 2001.CrossRefGoogle Scholar
Block, P., Thrust Network Analysis: Exploring Three-Dimensional Equilibrium. PhD thesis, MIT, Cambridge, MA, 2009.Google Scholar
Akbarzadeh, M., 3D Graphic Statics Using Polyhedral Reciprocal Diagrams. PhD thesis, ETH Zürich, Zürich, Switzerland, October 2016.Google Scholar
McRobie, A., “Maxwell and Rankine reciprocal diagrams via Minkowski sums for two-dimensional and three-dimensional trusses under load,” International Journal of Space Structures, vol. 31, pp. 203216, August 2016.CrossRefGoogle Scholar
Lee, J., Computational Design Framework for 3D Graphic Statics. PhD thesis, Department of Architecture, ETH Zurich, Zurich, 2018.Google Scholar
Block, P., Van Mele, T., and Rippmann, M., “Geometry of forces: Exploring the solution space of structural design,” GAM, vol. 12, pp. 2837, April 2016. Special issue S. Peters and Trummer, A. (eds.) – “Structural Affairs” Faculty of Architecture, Graz University of Technology – BIRKHÄUSER, 2016.Google Scholar
Block, P., Van Mele, T., Rippmann, M., Ranaudo, F., Calvo Barentin, C., and Paulson, N., “Redefining structural art: Strategies, necessities and opportunities,” The Structural Engineer, vol. 98, pp. 6672, January 2020.CrossRefGoogle Scholar
Bhooshan, Shajay, Dell’Endice, A., Ranaudo, F., , T. Van Mele, and Block, P., “Unreinforced concrete masonry for circular construction,” Architectural Intelligence, vol. 3, no. 1, p. 7, 2024.CrossRefGoogle Scholar
Van Mele, T., Rippmann, M., Lachauer, L., and Block, P., “Geometry-based understanding of structures,” Journal of the International Association of Shell and Spatial Structures, vol. 53, no. 2, pp. 285295, 2012.Google Scholar
Allen, E. and Zalewski, W., Form and Forces: Designing Efficient, Expressive Structures. New York, NY: John Wiley & Sons, 2009.Google Scholar
Maxwell, J. C., “On reciprocal figures and diagrams of forces,” Philosophical Magazine and Journal Series, vol. 4, no. 27, pp. 250261, 1864.CrossRefGoogle Scholar
Lee, J., Van Mele, T., and Block, P., “Disjointed force polyhedra,” Computer-Aided Design, vol. 99, pp. 1128, June 2018.CrossRefGoogle Scholar
Konstantatou, M., Geometry-Based Structural Analysis and Design via Discrete Stress Functions. PhD thesis, University of Cambridge, 2020.Google Scholar
McRobie, A., Konstantatou, M., Athanasopoulos, G., and Hannigan, L., “Graphic kinematics, visual virtual work and elastographics,” Royal Society Open Science, vol. 4, no. 5, p. 170202, 2017.CrossRefGoogle ScholarPubMed
Wolfe, W. S., Graphical Analysis: A Text Book on Graphic Statics. New York, NY: McGraw-Hill Book Company, Inc., 1921.Google Scholar
Neumeyer, F., Friedrich Gilly. Essays zur Architektur 1796–1799. Berlin: Ernst & Sohn, 1997.Google Scholar
Die Architektur der Spongiosa. (Zehnter Beitrag zur Mechanik des menschlichen Knochgerüstes) (pp. 615–628, 1 lith. Tafl.). Archives of Anatomy and Physiology, 1867/5. – Leipzig, Veit et Comp., 1867, 8°, pp. 547658, 3 gefalt. lith. Taf., orig. Broschur. First Edition! “In 1867 Georg Hermann von Meyer (1815–1892) published a paper on the architecture of spongy bone which led, indirectly, to Julius Wolff’s historic studies of the relation between form and function.” – David LeYey, The History of Orthopaedics, p. 299 [Attributes: First Edition; Soft Cover]Google Scholar
Hooke, R., A Description of Helioscopes, and Some Other Instruments. London: John Martyn, 1675.Google Scholar
Block, P., DeJong, M., and Ochsendorf, J., “As hangs the flexible line: Equilibrium of masonry arches,” Nexus Network Journal, vol. 8, no. 2, pp. 1324, 2006.CrossRefGoogle Scholar
Otto, F. and Rasch, B., Finding Form: Towards an Architecture of the Minimal. Edition Axel Menges, 1996.Google Scholar
Billington, D. P., The Art of Structural Design: A Swiss Legacy. New Haven, CT: Yale University Press, 2003.Google Scholar
Collins, G. R., “Antonio Gaudi: Structure and form,” Perspecta 8: The Yale Architectural Journal, pp. 6390, 1963.CrossRefGoogle Scholar
Addis, B., “History of using models to inform the design and construction of structures,” in Proceedings of IASS Symposium 2004, Shell and Spatial Structures: From Models to Realization (Montpelier, France), 2004.Google Scholar
Stevin, S., Der Beghinselen der Weeghconst van Christoffel Platijn. Amsterdam: Françoys van Raphelinghen, 1586.Google Scholar
Varignon, P., Nouvelle mecanique ou statique. Paris: at Claude Jombert, 1725.Google Scholar
Poncelet, J. V., Traitè des propriètès projectives des figures. Paris: Wiley, 1822.Google Scholar
Chatzis, K., “La réception de la statique graphique en france durant le dernier tiers du xixe siècle,” Revue d’histoire des mathématiques, vol. 10, 2004.Google Scholar
Kurrer, K. E., The History of the Theory of Structures: From Arch Analysis to Computational Mechanics. Berlin: Ernst & Sohn, 2008.CrossRefGoogle Scholar
Lamè, G. and Clapeyron, E., “Mèmoire sur la construction des polygones funiculaires,” Journal du génie civil, vol. I, 1828.Google Scholar
Rankine, M., A Manual of Applied Mechanics. London: R. Griffin, 1858.Google Scholar
Maxwell, J. C., “On reciprocal figures, frames and diagrams of forces,” Transactions of the Royal Society of Edinburgh, vol. 26, no. 1, pp. 140, 1870.CrossRefGoogle Scholar
Möbius, A. F., “Kann von zwei dreiseitigen Pyramiden eine jede in Bezug auf die andere um- und eingeschrieben zugleich heiβen?Journal für die reine und angewandte Mathematik, vol. 1828, no. 3, pp. 273278, 1828.Google Scholar
Culmann, K., Die Graphische Statik. Zürich: Verlag Meyer & Zeller, 1864.Google Scholar
Scholz, E., Symmetrie, Gruppe, Dualität. Zur Beziehung zwischen theoretischer Mathematik und Anwendungen in Kristallographie und Baustatik des 19. Jahrhunderts. Basel: Birkhäuser, 1989.Google Scholar
Cremona, L., Graphical Statics: Two Treatises on the Graphical Calculus and Reciprocal Figures in Graphical Statics. Oxford: Clarendon Press, 1890.Google Scholar
Bow, R. H., Economics of Construction in Relation to Framed Structures. London: Spon, 1873.Google Scholar
Zalewski, W. and Allen, E., Shaping Structures: Statics. New York: Wiley, 1998.Google Scholar
Kilian, A. and Ochsendorf, J., “Particle-spring systems for structural form finding,” Journal of the International Association for Shell and Spatial Structures, vol. 46, no. 2, pp. 7785, 2005.Google Scholar
Kilian, A., “Cadenary tool v.1 [computer software].” www.designexplorer.net/projectpages/cadenary.html, 2004 (Accessed March 1, 2009).Google Scholar
Piker, D., “Kangaroo: Form finding with computational physics,” Architectural Design, vol. 83, no. 2, pp. 136–7, 2013.CrossRefGoogle Scholar
Linkwitz, K. and Schek, H. J., “Einige Bemerkung von vorsgepannten Seilnetzkonstruktionen,” Ingenieur-Archiv, vol. 40, pp. 145158, 1971.CrossRefGoogle Scholar
Schek, H. J., “The force density method for form finding and computation of general networks,” Computer Methods in Applied Mechanics and Engineering, vol. 3, no. 1, pp. 115134, 1974.CrossRefGoogle Scholar
Barnes, M. R., “Form finding and analysis of tension structures by dynamic relaxation,” International Journal of Space Structures, vol. 14, no. 2, pp. 89104, 1999.CrossRefGoogle Scholar
Föppl, A., Das Fachwerk im Raume. Leipzig: Verlag von B.G. Teubner, 1892.Google Scholar
Schrems, M. J. and Kotnik, T., “Statically motivated form-finding based on extended graphical statics (EGS),” in Open Systems: Proceedings of the 18th International Conference on Computer-Aided Architectural Design Research in Asia (CAADRIA 2013) (Stouffs, R., Janssen, P., Roudavski, S., and Tuner, B., eds.), National University of Singapore, 2013.Google Scholar
D’acunto, P., Jasienski, J. P., Ohlbrock, P. O., Fivet, C., Schwartz, J., and Zastavni, D., “Vector-based 3D graphic statics: A framework for the design of spatial structures based on the relation between form and forces,” International Journal of Solids and Structures, vol. 167, pp. 5870, 2019.CrossRefGoogle Scholar
McRobie, A., “Maxwell and Rankine reciprocal diagrams via Minkowski sums for 2D and 3D trusses under load,” International Journal of Space Structures, vol. 31, pp. 115134, 2016.CrossRefGoogle Scholar
Heyman, J., The Stone Skeleton: Structural Engineering of Masonry Architecture. Cambridge: Cambridge University Press, 1997.Google Scholar
Beghini, L. L., Carrion, J., B. A., A. Mazurek, and W. F. Baker, “Structural optimization using graphic statics,” Structural and Multidisciplinary Optimization, vol. 49, no. 3, pp. 351366, 2013.CrossRefGoogle Scholar
Fivet, C. and Zastavni, D., “Constraint-based graphic statics: New paradigms of computer-aided structural equilibrium design,” Journal of the International Association of Shell and Spatial Structures, vol. 54, no. 4, pp. 271280, 2013.Google Scholar
Baker, W. F., Beghini, L. L., Mazurek, A., Carrion, J., and Beghini, A., “Maxwell’s reciprocal diagrams and discrete michell frames,” Structural Multidisciplinary Optimization, vol. 48, pp. 267277, 2013.CrossRefGoogle Scholar
Mele, T. V. and Block, P., “Algebraic graph statics,” Computer-Aided Design, vol. 53, pp. 104116, 2014.CrossRefGoogle Scholar
Adriaenssens, S., Block, P., Veenendaal, D., and Williams, C., eds., Shell Structures for Architecture: Form Finding and Optimization. London: Taylor & Francis – Routledge, 2014.CrossRefGoogle Scholar
Morsch, E., “Der eisenbetonbique, seine theorie undanwendung,” ReinforcedConcrete, Theory and Application), Verlag Konrad Wittwer, Stuttgart, 1912.Google Scholar
Hughes, T. J., The Finite Element Method: Linear Static and Dynamic Finite Element Analysis. Lowell, MA: Courier Corporation, 2012.Google Scholar
Schlaich, J., Schäfer, K., and Jennewein, M., “Toward a consistent design of structural concrete,” PCI Journal, vol. 32, no. 3, pp. 74150, 1987.CrossRefGoogle Scholar
Muttoni, A., Fernández Ruiz, M., and Niketic, F., “Design versus assessment of concrete structures using stress fields and strut-and-tie models,” ACI Structural Journal, vol. 112, no. S49, pp. 605616, 2015.CrossRefGoogle Scholar
Meléndez, C., Miguel, P. F., and Pallarés, L., “A simplified approach for the ultimate limit state analysis of three-dimensional reinforced concrete elements,” Engineering Structures, vol. 123, pp. 330340, 2016.CrossRefGoogle Scholar
Meschke, G., Pichler, B., and Rots, J. G. (eds.), Computational Modelling of Concrete Structures: Proceedings of the Conference on Computational Modelling of Concrete and Concrete Structures (EURO-C 2018), February 26–March 1, 2018, Bad Hofgastein, Austria. London: CRC Press, 2018.CrossRefGoogle Scholar
Bendsøe, M. P., Topology Optimization. Berlin, Germany: Springer, 2009.Google Scholar
Bendsøe, M. P. and Sigmund, O., “Material interpolation schemes in topology optimization,” Archive of Applied Mechanics, vol. 69, no. 9–10, pp. 635654, 1999.Google Scholar
Eschenauer, H. A. and Olhoff, N., “Topology optimization of continuum structures: A review,” Applied Mechanics Reviews, vol. 54, no. 4, pp. 331390, 2001.CrossRefGoogle Scholar
Liang, Q. Q., Xie, Y. M., and Steven, G. P., “Topology optimization of strut-and-tie models in reinforced concrete structures using an evolutionary procedure,” ACI, Structural Journal, vol. 97, no. 2, pp. 322332, 2000.Google Scholar
Ali, M. A. and White, R. N., “Automatic generation of truss model for optimal design of reinforced concrete structures,” Structural Journal, vol. 98, no. 4, pp. 431442, 2001.Google Scholar
Kwak, H. G. and Noh, S. H., “Determination of strut-and-tie models using evolutionary structural optimization,” Engineering Structures, vol. 28, no. 10, pp. 14401449, 2006.CrossRefGoogle Scholar
Bruggi, M., “Generating strut-and-tie patterns for reinforced concrete structures using topology optimization,” Computers and Structures, vol. 87, no. 23–24, pp. 14831495, 2009.CrossRefGoogle Scholar
Victoria, M., Querin, O. M., and Martı́, P., “Generation of strut-and-tie models by topology design using different material properties in tension and compression,” Structural and Multidisciplinary Optimization, vol. 44, no. 2, pp. 247258, 2011.CrossRefGoogle Scholar
Yang, Y., Moen, C. D., and Guest, J. K., “Three-dimensional force flow paths and reinforcement design in concrete via stress-dependent truss-continuum topology optimization,” Journal of Engineering Mechanics, vol. 141, no. 1, p. 04014106, 2014.CrossRefGoogle Scholar
Akbarzadeh, M., Van Mele, T., and Block, P., “On the equilibrium of funicular polyhedral frames and convex polyhedral force diagrams,” Computer-Aided Design, vol. 63, pp. 118128, 2015.CrossRefGoogle Scholar
Bolhassani, M., Tabatabaei Ghomi, A., Nejur, A., and Akbarzadeh, M., “Structural behavior of a cast-in-place funicular polyhedral concrete: Applied 3D graphic statics,” in Proceedings of the IASS Symposium 2018, Creativity in Structural Design, vol. 2018 (MIT, Boston, MA), pp. 18, International Association for Shell and Spatial Structures (IASS), July 1620, 2018.Google Scholar
Akbarzadeh, M., Mahnia, M., Taherian, R., and Tabrizi, A. H., “Prefab, concrete polyhedral frame: Materializing 3D graphic statics,” in Proceedings of the IASS Annual Symposium 2017, “Interfaces: Architecture. Engineering. Science” (Annette Bögle, M. G., ed.), (Hamburg, Germany), September 2017.Google Scholar
Bolhassani, M., Akbarzadeh, M., Mahnia, M., and Taherian, R., “On structural behavior of the first funicular polyhedral frame designed by 3D graphic statics,” Journal of Building Engineering, vol. 14, pp. 5668 2017.Google Scholar
Akbarzadeh, M., Bolhassani, M., Nejur, A., Yost, J. R., Byrnes, C., Schneider, J., Knaack, U., and Borg Costanzi, C., “The design of an ultra-transparent funicular glass structure,” in Structures Congress 2019, (Orlando, FL), April 2427, 2019.Google Scholar
Yost, J. R., Bolhassani, M., Chhadeh, P. A., Ryan, L., Schneider, J., and Akbarzadeh, M., “Mechanical performance of polyhedral hollow glass units under compression,” Engineering Structures, vol. 254, p. 113730, 2022.CrossRefGoogle Scholar
Lu, Y., Seyedahmadian, A., Chhadeh, P. A., Cregan, M., Bolhassani, M., Schneider, J., Yost, J. R., Brennan, G., and Akbarzadeh, M., “Funicular glass bridge prototype: Design optimization, fabrication, and assembly challenges,” Glass Structures and Engineering, vol. 7, pp. 319330, June 2022.CrossRefGoogle Scholar
Tabatabaei Ghomi, A., Bolhassani, M., Nejur, A., and Akbarzadeh, M., “Effect of subdivision of force diagrams on the local buckling, load-path and material use of founded forms,” in Proceedings of the IASS Symposium 2018, Creativity in Structural Design (MIT, Boston, MA), July 1620, 2018.Google Scholar
Akbari, M., Bolhassani, M., and Akbarzadeh, M., “From polyhedral to minimal surface funicular spatial structures,” in Proceedings of IASS Symposium 2019 and Structural Membranes 2019, FORM and FORCE (Barcelona, Spain), October 710, 2019.Google Scholar
Akbari, M., Mirabolghasemi, A., Bolhassani, M., Akbarzadeh, A., and Akbarzadeh, M., “Strut-based cellular to shellular funicular materials,” Advanced Functional Materials, vol. 32, no. 14, p. 2109725, 2022.CrossRefGoogle Scholar
Zheng, H., Mofatteh, H., Hablicsek, M., Akbarzadeh, A., and Akbarzadeh, M., “Dragonfly-inspired wing design enabled by machine learning and Maxwell’s reciprocal diagrams,” Advanced Science, vol. 10, no. 18, p. 2207635, 2023.CrossRefGoogle ScholarPubMed
Lu, Y., Alsalem, T., and Akbarzadeh, M., “A method for designing multi-layer sheet-based lightweight funicular structures,” Journal of the International Association for Shell and Spatial Structures, vol. 63, p. 252262, December 2022.CrossRefGoogle Scholar
Richeson, D. S., Euler’s Gem: The Polyhedron Formula and the Birth of Topology. Princeton, NJ: Princeton University Press, 2010.Google Scholar
Kreyszig, E., Advanced Engineering Mathematics, 10th edition, Wiley, 2011.Google Scholar
Stokes, G. G., Mathematical and Physical Papers. Cambridge: Cambridge University Press, 1905.Google Scholar
Demaine, E. D. and O’Rourke, J., “Reconstruction of polyhedra,” in Geometric Folding Algorithms: Linkages, Origami, Polyhedra, pp. 339–357. Cambridge: Cambridge University Press, 2007.CrossRefGoogle Scholar
Barber, C. B., Dobkin, D. P., and Huhdanpaa, H., “The quickhull algorithm for convex hulls,” ACM Transactions on Mathematical Software (TOMS), vol. 22, no. 4, pp. 469483, 1996.CrossRefGoogle Scholar
Horn, B. K. P., “Extended Gaussian images,” Proceedings of the IEEE, vol. 72, no. 2, pp. 16711686, 1984.CrossRefGoogle Scholar
Roach, J. and Wright, J., “Spherical dual images: A 3D representation method for solid objects that combines dual space and gaussian spheres,” in Proceedings of the 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 10871092, April 1986.CrossRefGoogle Scholar
Moni, S., “A closed-form solution for the reconstruction of a convex polyhedron from its extended gaussian image,” in [1990] Proceedings. 10th International Conference on Pattern Recognition, vol. 1, pp. 223226, June 1990.CrossRefGoogle Scholar
National Gallery of Art Catalog of an exhibition held at the National Gallery of Art, Mar. 29–July 12, 1998; San Francisco Museum of Art, Sep. 4–Dec. 1, 1998.Google Scholar
Huerta, S., “Structural design in the work of gaudi,” Architectural Science Review, vol. 49, no. 4, pp. 324339, 2006.CrossRefGoogle Scholar
Poleni, G., Memorie Istoriche della gran cupola del tempio vaticano. No. 33 in Padova: Nella Stamperia del Seminario, 1748.Google Scholar
Karnovsky, I. A., Theory of Arched Structures: Strength, Stability, Vibration. Berlin, Germany: Springer Science & Business Media, 2011 Dec 29.Google Scholar
Fivet, C. and Zastavni, D., “Robert maillart’s key methods from the Salginatobel Bridge design process (1928),” Journal of the International Association for Shell and Spatial Structures, vol. 53, no. 1, pp. 3947, 2012.Google Scholar
Billington, D. P., “Deck-stiffened arch bridges of robert maillart,” Journal of the Structural Division, vol. 99, no. 7, pp. 15271539, 1973.CrossRefGoogle Scholar
Ros, M., “Versuche und erfahrungen an ausgeführten eisenbeton-bauwerken in der schweiz 1924–1937. 1,” Ergänzung, vol. 1939, pp. 19411942, 1938.Google Scholar
Akbarzadeh, M., Van Mele, T., and Block, P., “Compression-only form finding through finite subdivision of the external force polygon,” in Proceedings of the IASS-SLTE Symposium 2014 (O. J.B. and Tarczewski, R., eds.), (Brasilia, Brazil), International Association of Shell and Spatial Structures, p. 1, 2014.Google Scholar
Rippmann, M., Lachauer, L., and Block, P., “Interactive vault design,” International Journal of Space Structures, vol. 27, no. 4, pp. 219230, 2012.CrossRefGoogle Scholar
Baumgart, B. G., “A polyhedron representation for computer vision,” in Proceedings of the May 19–22, 1975, National Computer Conference and Exposition 1975, May 19, pp. 589596, ACM Digital Library.Google Scholar
Nejur, A. and Akbarzadeh, M., “Constrained manipulation of polyhedral systems,” in Proceedings of the IASS Symposium 2018, Creativity in Structural Design (MIT, Boston, MA), July 1620, 2018.Google Scholar
Whiteley, W., Ash, P. F., Bolker, E., and Crapo, H., “Convex polyhedra, dirichlet tessellations, and spider webs,” in Shaping Space: Exploring Polyhedra in Nature, Art, and the Geometrical Imagination (Senechal, M., ed.), (New York, NY), pp. 231–251, Springer, 2013.Google Scholar
Akbarzadeh, M. and Nejur, A., “PolyFrame: Structural form finding tool using 3D graphic statics.” www.food4rhino.com/app/polyframe, 2017–2019.Google Scholar
Bompiani, E. et al., “DJ Struick, lectures on classical differential geometry,” Bulletin of the American Mathematical Society, vol. 57, no. 2, pp. 154155, 1951.CrossRefGoogle Scholar
Ochsendorf, J. and Freeman, M., Guastavino Vaulting: The Art of Structural Tile. Princeton NJ: Princeton Architectural Press, 2013.Google Scholar
Waite, D. and Gioia, P.. “United States patents held by the Rafael Guastavinos, father and son,” APT Bulletin: The Journal of Preservation Technology, vol. 30, no. 4, pp. 59156, 1999.CrossRefGoogle Scholar
Mofid, M., Alizadegan, R., Ashori, B., and Yavari, A., “Computing the kern of a general cross-section,” Advances in Engineering Software, vol. 32, no. 12, pp. 949955, 2001.CrossRefGoogle Scholar
Wilson, H. B. and Turcotte, L. H., “Determining the kern for a compression member of general cross-section,” Advances in Engineering Software, vol. 17, no. 2, pp. 113123, 1993.CrossRefGoogle Scholar
Anderson, S., Dieste, E., and Hochuli, S., Eladio Dieste: Innovation in structural art. Princeton, NJ: Princeton Architectural Press, 2004.Google Scholar
Van Balen, K. and Verstrynge, E. (eds), Structural Analysis of Historical Constructions: Anamnesis, Diagnosis, Therapy, Controls: Proceedings of the 10th International Conference on Structural Analysis of Historical Constructions (SAHC, Leuven, Belgium, 1315 September 2016). CRC Press, 2016 Nov 3.CrossRefGoogle Scholar
Cassinello, P., “The evolution of concrete shells; innovations by Ildefonso Sánchez del Rı́o,” Informes de la Construcción, vol. 65, no. 530, pp. 147154, 2013.CrossRefGoogle Scholar
Ortíz, C. V., Chalarca, D. L., Restrepo, M. G., and Arango, N. M.. Arquitectura moderna en Medellín 1947–1970. Medellín: Universidad Nacional de Colombia. 2010.Google Scholar
Woodman, F., The Architectural History of King’s College Chapel: And Its Place in the Development of Late Gothic Architecture in England and France. London: Routledge, 2023.CrossRefGoogle Scholar
Han, S. C., Lee, J. W., and Kang, K., “A new type of low density material: Shellular,” Advanced Materials, vol. 27, no. 37, pp. 55065511, 2015.CrossRefGoogle ScholarPubMed
Fischer, W. and Koch, E., “Genera of minimal balance surfaces,” Acta Crystallographica Section A, vol. 45, no. 10, pp. 726732, 1989.CrossRefGoogle Scholar
Akbari, M., Mirabolghasemi, A., Akbarzadeh, H., and Akbarzadeh, M., “Geometry-based structural form-finding to design architected cellular solids,” in ACM SYMPOSIUM ON COMPUTATIONAL FABRICATION, SCF’20, (Virtual Event, USA), Association for Computing Machinery, ACM, November 56 2020.Google Scholar
Akbari, M., Lu, Y., and Akbarzadeh, M., “From design to the fabrication of shellular funicular structures,” in Proceedings of the Association for Computer-Aided Design in Architecture (ACADIA), 2021.CrossRefGoogle Scholar
Van Mele, T. and Block, P., “Algebraic graph statics,” Computer-Aided Design, vol. 53, pp. 104116, 2014.CrossRefGoogle Scholar
McRobie, A., Baker, W., Mitchell, T., and Konstantatou, M., “Mechanisms and states of self-stress of planar trusses using graphic statics, part II: Applications and extensions,” International Journal of Space Structures, vol. 31, no. 2–4, pp. 102111, 2016.CrossRefGoogle Scholar
Marmier, A. and Evans, K. E., “Flexibility in MOFs: Do scalar and group-theoretical counting rules work?,” Dalton Transactions, vol. 45, no. 10, pp. 43604369, 2016.CrossRefGoogle ScholarPubMed
Lee, J., Fivet, C., and Mueller, C., “Modelling with forces: Grammar-based graphic statics for diverse architectural structures,” in Modelling Behaviour: Design Modelling Symposium 2015 (pp. 491504). Springer International Publishing, 2015.CrossRefGoogle Scholar
Lee, J., Meled, T. V., and Block, P., “Form-finding explorations through geometric transformations and modifications of force polyhedrons,” in Proceedings of IASS Annual Symposia, vol. 2016, pp. 110, International Association for Shell and Spatial Structures (IASS), 2016.Google Scholar
Timo, H. N., Masoud, A., and Per, G., “Addressing buckling of compression members using subdivision of force diagrams,” in Proceedings of the IASS Annual Symposium 2017, Interfaces: Architecture. Engineering. Science, IASS, 2017.Google Scholar
Conzett, J. and Mostafavi, M., “Structure as space: Engineering and architecture in the works of Jürg Conzett and his partners,” Mostafavi, (Mohsen, ed.) (Text Accompanying Photos of Jürg Conzett and Bruno Reichlin), Architectural Association, 2006.Google Scholar
Zastavni, D., “The structural design of Maillart’s Chiasso Shed (1924): A graphic procedure,” Structural Engineering International, vol. 18, no. 3, pp. 247252, 2008.CrossRefGoogle Scholar
Akbarzadeh, M., Van Mele, T., and Block, P., “Spatial compression-only form finding through subdivision of external force polyhedron,” in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium (Amsterdam), p. 1, International Association of Shell and Spatial Structures, August 2015.Google Scholar
Bernhard, M., Hansmeyer, M., and Dillenburger, B., “Volumetric modelling for 3D printed architecture,” in AAG – Advances in Architectural Geometry (Hesselgren, L., Kilian, A., Sorkine Hornung, O., Malek, S., Olsson, K.-G., and Williams, C. J. K., eds.), (Göteborg, Sweden), pp. 392415, Klein Publishing GmbH, 2018.Google Scholar
Lorensen, W. E. and Cline, H. E., “Marching cubes: A high resolution 3D surface construction algorithm,” Proceedings of the 14th Annual Conference on Computer Graphics and Interactive Techniques – SIGGRAPH ’87, vol. 21, no. 4, pp. 163169, 1987.CrossRefGoogle Scholar
Akbarzadeh, M., Mahnia, M., Taherian, R., and Tabrizi, A. H., “Prefab, concrete polyhedral frame: Materializing 3D graphic statics,” in Proceedings of IASS Annual Symposia, vol. 2017, pp. 110, International Association for Shell and Spatial Structures (IASS), 2017.Google Scholar
Simiu, E., Design of Buildings for Wind: A Guide for ASCE 7-10 Standard Users and Designers of Special Structures. New York, NY: John Wiley & Sons, 2011.CrossRefGoogle Scholar
Hablicsek, M., Akbarzadeh, M., and Guo, Y., “Algebraic 3D graphic statics: Reciprocal constructions,” Computer-Aided Design, vol. 108, pp. 3041, 2019.CrossRefGoogle Scholar
Akbarzadeh, M., Hablicsek, M., and Guo, Y., “Developing algebraic constraints for reciprocal polyhedral diagrams of 3D graphic statics,” in Proceedings of the IASS Symposium 2018, Creativity in Structural Design (MIT, Boston, MA), July 1620, 2018.Google Scholar
Nejur, A. and Akbarzadeh, M., “Polyframe, efficient computation for 3D graphic statics,” Computer-Aided Design, vol. 134, p. 103003, 2021.CrossRefGoogle Scholar
Alic, V. and Âkesson, D., “Bi-directional algebraic graphic statics,” Computer-Aided Design, vol. 93, pp. 2637, 2017.CrossRefGoogle Scholar
Maia Avelino, R., Lee, J., Van Mele, T., and Block, P., “An interactive implementation of algebraic graphic statics for geometry-based teaching and design of structures,” in Proceedings of the International fib Symposium on the Conceptual Design of Structures 2021 (Fivet, C., P. D’Acunto, M. Fernández Ruiz, P. O. Ohlbrock, eds.), (Attisholz Areal, Switzerland), pp. 447454, September 2021.CrossRefGoogle Scholar
Moore, E. H., “On the reciprocal of the general algebraic matrix,” Bulletin of the American Mathematical Society, vol. 26, no. 9, pp. 385396, 1920.Google Scholar
Penrose, R., “A generalized inverse for matrices,” Mathematical Proceedings of the Cambridge Philosophical Society, vol. 51, no. 3, pp. 406413, 1955.CrossRefGoogle Scholar
Grima, J. N., Gatt, R., and Farrugia, P.-S., “On the properties of auxetic meta-tetrachiral structures,” Physica Status Solidi (b), vol. 245, no. 3, pp. 511520, 2008.CrossRefGoogle Scholar
Schenk, M. and Guest, S. D., “Geometry of miura-folded metamaterials,” Proceedings of the National Academy of Sciences, vol. 110, no. 9, pp. 32763281, 2013.CrossRefGoogle ScholarPubMed
Cho, Y., Shin, J.-H., Costa, A., Kim, T. A., Kunin, V., Li, J., Lee, S. Y., Yang, S., Han, H. N., Choi, I.-S., and Srolovitz, D. J., “Engineering the shape and structure of materials by fractal cut,” Proceedings of the National Academy of Sciences, vol. 111, no. 49, pp. 17390–17395, 2014.CrossRefGoogle ScholarPubMed
Gatt, R., Mizzi, L., Azzopardi, J. I., Azzopardi, K. M., Attard, D., Casha, A., Briffa, J., and Grima, J. N., “Hierarchical auxetic mechanical metamaterials,” Scientific Reports, vol. 5, no. 1, p. 8395, 2015.CrossRefGoogle ScholarPubMed
Hewage, T. A. M., Alderson, K. L., Alderson, A., and Scarpa, F., “Double-negative mechanical metamaterials displaying simultaneous negative stiffness and negative poisson’s ratio properties,” Advanced Materials, vol. 28, no. 46, pp. 10323–10332, 2016.CrossRefGoogle ScholarPubMed
Neville, R. M., Scarpa, F., and Pirrera, A., “Shape morphing Kirigami mechanical metamaterials,” Scientific Reports, vol. 6, no. 1, p. 31067, 2016.CrossRefGoogle ScholarPubMed
Wu, W., Qi, D., Liao, H., Qian, G., Geng, L., Niu, Y., and Liang, J., “Deformation mechanism of innovative 3D chiral metamaterials,” Scientific Reports, vol. 8, no. 1, p. 12575, 2018.CrossRefGoogle ScholarPubMed
Koudelka, P., Jiroušek, O., Fíla, T., and Doktor, T., “Compressive properties of auxetic structures produced with direct 3D printing,” Materiali in Tehnologije, vol. 50, no. 3, pp. 311317, 2016.CrossRefGoogle Scholar
Hablicsek, M. and Akbarzadeh, M., “Designing the geometry of auxetic materials using graphic statics,” Proceedings of the IASS Annual Symposium 2020/21 and the 7th International Conference on Spatial Structure, 2021.Google Scholar
Lu, Y., Hablicsek, M., and Akbarzadeh, M., “Algebraic 3D graphic statics with edge and vertex constraints: A comprehensive approach to extend the solution space for polyhedral form-finding,” Computer-Aided Design, vol. 166, p. 103620, January 2024.CrossRefGoogle Scholar
Calladine, C. R., “Buckminster fuller’s ‘tensegrity’ structures and Clerk Maxwell’s rules for the construction of stiff frames,” International Journal of Solids and Structures, vol. 14, no. 2, pp. 161172, 1978.CrossRefGoogle Scholar
Lee, J., Van Mele, T., and Block, P., “Form-finding explorations through geometric manipulations of force polyhedrons,” in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium 2016 (Tokyo, Japan), September 2016.Google Scholar
PSL, “PolyFrame 2.” www.food4rhino.com/app/polyframe-2, May 2023.Google Scholar
Nejur, A. and Akbarzadeh, M., “Polyframe, efficient computation for 3D graphic statics,” Computer-Aided Design, vol. 134, p. 103003, May 2021.CrossRefGoogle Scholar
Kremer, M., Bommes, D., and Kobbelt, L., “Openvolumemesh – A versatile index-based data structure for 3D polytopal complexes,” in Proceedings of the 21st International Meshing Roundtable (Jiao, X. and Weill, J.-C., eds.), (Berlin, Heidelberg), pp. 531548, Springer, 2013.CrossRefGoogle Scholar
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Río, J. F., Wiebe, M., Peterson, P., Gérard-Marchant, P., Sheppard, K., Reddy, T., Weckesser, W., Abbasi, H., Gohlke, C., and Oliphant, T. E., “Array programming with NumPy,” Nature, vol. 585, pp. 357362, September 2020.CrossRefGoogle ScholarPubMed
Reid, D. R., Pashine, N., Wozniak, J. M., Jaeger, H. M., Liu, A. J., Nagel, S. R., and de Pablo, J. J., “Auxetic metamaterials from disordered networks,” Proceedings of the National Academy of Sciences, vol. 115, pp. E1384E1390, February 2018.CrossRefGoogle ScholarPubMed
Reid, D. R., Pashine, N., Bowen, A. S., Nagel, S. R., and Pablo, J. J. D., “Ideal isotropic auxetic networks from random networks,” Soft Matter, vol. 15, no. 40, pp. 80848091, 2019.CrossRefGoogle ScholarPubMed
Akbarzadeh, M. and Hablicsek, M., “Algebraic 3D graphic statics: Constrained areas,” Computer-Aided Design, vol. 141, p. 103068, 2021.CrossRefGoogle Scholar
O’Rourke, J., “Convex polyhedra realizing given face areas,” CoRR, abs/1101.0823, 2011.Google Scholar
Akbarzadeh, M. and Hablicsek, M., “Geometric degrees of freedom and non-conventional spatial structural forms,” in Impact: Design with All Senses (Berlin, Germany), September 2325, 2020.Google Scholar
Ohlbrock, P. O., D’acunto, P., Jasienski, J. P., and Fivet, C., “Vector-based 3D graphic statics (part iii): Designing with combinatorial equilibrium modelling,” in Proceedings of IASS Annual Symposia 2016 Sep 26 (Vol. 2016, No. 15, pp. 1–10). International Association for Shell and Spatial Structures (IASS).Google Scholar
Konstantatou, M. and McRobie, A., “3D graphic statics: Geometric construction of global equilibrium,” in Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium (Tokyo, Japan), International Association of Shell and Spatial Structures, 2015.Google Scholar
Baranyai, T., “Analytical graphic statics,” International Journal of Space Structures, vol. 36, no. 2, pp. 117126, 2021.CrossRefGoogle Scholar
Cai, J., Chen, H., Li, Y., and Akbarzadeh, A., “Lessons from nature for carbon-based nanoarchitected metamaterials,” Small Science, vol. 2, no. 12, p. 2200039, 2022.CrossRefGoogle Scholar
Naleway, S. E., Porter, M. M., McKittrick, J., and Meyers, M. A., “Structural design elements in biological materials: Application to bioinspiration,” Advanced Materials, vol. 27, no. 37, pp. 54555476, 2015.CrossRefGoogle ScholarPubMed
Bhadra, C. M., Truong, V. K., Pham, V. T. H., Kobaisi, M. A., Seniutinas, G., Wang, J. Y., Juodkazis, S., Crawford, R. J., and Ivanova, E. P., “Antibacterial titanium nano-patterned arrays inspired by dragonfly wings,” Scientific Reports, vol. 5, p. 16817, 2015. https://doi.org/10.1038/srep16817.CrossRefGoogle ScholarPubMed
Sivasankaran, P. N., Ward, T. A., Salami, E., Viyapuri, R., Fearday, C. J., and Johan, M. R., “An experimental study of elastic properties of dragonfly-like flapping wings for use in biomimetic micro air vehicles (BMAVs),” Chinese Journal of Aeronautics, vol. 30, no. 2, pp. 726737, 2017. https://doi.org/10.1016/j.cja.2017.02.011.CrossRefGoogle Scholar
Khaheshi, A., Gorb, S., and Rajabi, H., “Triple stiffness: A bioinspired strategy to combine load-bearing, durability, and impact-resistance,” Advanced Science, vol. 8, no. 11, p. 2004338, 2021.CrossRefGoogle ScholarPubMed
Göttler, C., Elflein, K., Siegwart, R., and Sitti, M., “Spider origami: Folding principle of jumping spider leg joints for bioinspired fluidic actuators,” Advanced Science, vol. 8, no. 5, p. 2003890, 2021.CrossRefGoogle ScholarPubMed
Donoughe, S., Crall, J. D., Merz, R. A., and Combes, S. A., “Resilin in dragonfly and damselfly wings and its implications for wing flexibility,” Journal of Morphology, vol. 272, no. 12, pp. 14091421, 2011. https://doi.org/10.1002/jmor.10992.CrossRefGoogle ScholarPubMed
Tsuyuki, K., Sudo, S., and Tani, J., “Morphology of insect wings and airflow produced by flapping insects,” Journal of Intelligent Material Systems and Structures, vol. 17, pp. 743751, 2006.CrossRefGoogle Scholar
Rajabi, H., Ghoroubi, N., Malaki, M., Darvizeh, A., and Gorb, S., “Basal complex and basal venation of odonata wings: Structural diversity and potential role in the wing deformation,” PloS one, vol. 11, no. 8, p. e0160610, 2016.CrossRefGoogle ScholarPubMed
Wootton, R., “The geometry and mechanics of insect wing deformations in flight: A modelling approach,” Insects, vol. 11, no. 7, p. 446, 2020.CrossRefGoogle ScholarPubMed
Li, X.-J., Zhang, Z.-H., Liang, Y.-H., Ren, L.-Q., Jie, M., and Yang, Z.-G., “Antifatigue properties of dragonfly pantala flavescens wings,” Microscopy Research and Technique, vol. 77, no. 5, pp. 356362, 2014.CrossRefGoogle ScholarPubMed
Rajabi, H., Shafiei, A., Darvizeh, A., Dirks, J.-H., Appel, E., and Gorb, S. N., “Effect of microstructure on the mechanical and damping behaviour of dragonfly wing veins,” Royal Society Open Science, vol. 3, no. 2, p. 160006, 2016.CrossRefGoogle ScholarPubMed
Sun, J. and Bhushan, B., “The structure and mechanical properties of dragonfly wings and their role on flyability,” Comptes Rendus Mécanique, vol. 340, no. 1–2, pp. 317, 2012.CrossRefGoogle Scholar
Jongerius, S. and Lentink, D., “Structural analysis of a dragonfly wing,” Experimental Mechanics, vol. 50, no. 9, pp. 13231334, 2010.CrossRefGoogle Scholar
Vyatskikh, A., Delalande, S., Kudo, A., Zhang, X., Portela, C. M., and Greer, J. R., “Additive manufacturing of 3D nano-architected metals,” Nature Communications, vol. 9, no. 1, pp. 18, 2018.CrossRefGoogle ScholarPubMed
Zhang, X., Vyatskikh, A., Gao, H., Greer, J. R., and Li, X., “Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon,” Proceedings of the National Academy of Sciences, vol. 116, no. 14, pp. 66656672, 2019.CrossRefGoogle ScholarPubMed
Sarvestani, H. Y., Akbarzadeh, A., Mirbolghasemi, A., and Hermenean, K., “3D printed meta-sandwich structures: Failure mechanism, energy absorption and multi-hit capability,” Materials and Design, vol. 160, pp. 179193, 2018.CrossRefGoogle Scholar
Shi, J., Mofatteh, H., Mirabolghasemi, A., Desharnais, G., and Akbarzadeh, A., “Programmable multistable perforated shellular,” Advanced Materials, vol. 33, no. 42, p. 2102423, 2021.CrossRefGoogle ScholarPubMed
Fernandes, M. C., Aizenberg, J., Weaver, J. C., and Bertoldi, K., “Mechanically robust lattices inspired by deep-sea glass sponges,” Nature Materials, vol. 20, no. 2, pp. 237241, 2021.CrossRefGoogle ScholarPubMed
Gu, D., Shi, X., Poprawe, R., Bourell, D. L., Setchi, R., and Zhu, J., “Material-structure-performance integrated laser-metal additive manufacturing,” Science, vol. 372, no. 6545, p. eabg1487, 2021.CrossRefGoogle ScholarPubMed
Fan, J., Zhang, L., Wei, S., Zhang, Z., Choi, S.-K., Song, B., and Shi, Y., “A review of additive manufacturing of metamaterials and developing trends,” Materials Today, 2021.Google Scholar
Mofatteh, H., Shahryari, B., Mirabolghasemi, A., Seyedkanani, A., Shirzadkhani, R., Desharnais, G., and Akbarzadeh, A., “Programming multistable metamaterials to discover latent functionalities,” Advanced Science, vol. 9, no. 33, p. 2202883, 2022.CrossRefGoogle ScholarPubMed
Khaheshi, A. and Rajabi, H., “Mechanical intelligence (MI): A bioinspired concept for transforming engineering design,” Advanced Science, vol. 9, no. 32, p. 2203783, 2022.CrossRefGoogle Scholar
Xu, J., Liu, T., Zhang, Y., Zhang, Y., Wu, K., Lei, C., Fu, Q., and Fu, J., “Dragonfly wing-inspired architecture makes a stiff yet tough healable material,” Matter, vol. 4, no. 7, pp. 24742489, 2021.CrossRefGoogle Scholar
Aage, N., Andreassen, E., Lazarov, B. S., and Sigmund, O., “Giga-voxel computational morphogenesis for structural design,” Nature, vol. 550, no. 7674, pp. 8486, 2017.CrossRefGoogle ScholarPubMed
Martinez-Val, R., Perez, E., and Palacin, J. F., “Historical evolution of air transport productivity and efficiency,” in 43rd AIAA Aerospace Sciences Meeting and Exhibit, 2005.CrossRefGoogle Scholar
Chen, J.-S., Chen, J.-Y., and Chou, Y.-F., “On the natural frequencies and mode shapes of dragonfly wings,” Journal of Sound and Vibration, vol. 313, no. 3, pp. 643654, 2008. https://doi.org/10.1016/j.jsv.2007.11.056.CrossRefGoogle Scholar
Wakeling, J. and Ellington, C., “Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight,” The Journal of Experimental Biology, vol. 200, no. 3, pp. 557582, 1997.CrossRefGoogle ScholarPubMed
Liu, X., Hefler, C., Shyy, W., and Qiu, H., “The importance of flapping kinematic parameters in the facilitation of the different flight modes of dragonflies,” Journal of Bionic Engineering, vol. 18, no. 2, pp. 419427, 2021.CrossRefGoogle Scholar
Clawson, T. S., Ferrari, S., Fuller, S. B., and Wood, R. J., “Spiking neural network (SNN) control of a flapping insect-scale robot,” in 2016 IEEE 55th Conference on Decision and Control (CDC), pp. 33813388, IEEE, 2016.CrossRefGoogle Scholar
Ribeiro, A., Awruch, A., and Gomes, H., “An airfoil optimization technique for wind turbines,” Applied Mathematical Modelling, vol. 36, no. 10, pp. 48984907, 2012.CrossRefGoogle Scholar
Chen, J., Wang, Q., Pang, X., Li, S., and Guo, X., “Improvement of airfoil design using smooth curvature technique,” Renewable energy, vol. 51, pp. 426435, 2013.CrossRefGoogle Scholar
Henne, P. A. and Gregg, R. D. III, “New airfoil design concept,” Journal of Aircraft, vol. 28, no. 5, pp. 300311, 1991.CrossRefGoogle Scholar
Wen, H., Sang, S., Qiu, C., Du, X., Zhu, X., and Shi, Q., “A new optimization method of wind turbine airfoil performance based on Bessel equation and gabp artificial neural network,” Energy, vol. 187, p. 116106, 2019.CrossRefGoogle Scholar
Appel, E., Heepe, L., Lin, C.-P., and Gorb, S. N., “Ultrastructure of dragonfly wing veins: composite structure of fibrous material supplemented by resilin,” Journal of Anatomy, vol. 227, no. 4, pp. 561582, 2015.CrossRefGoogle ScholarPubMed
Rajabi, H., Moghadami, M., and Darvizeh, A., “Investigation of microstructure, natural frequencies and vibration modes of dragonfly wing,” Journal of Bionic Engineering, vol. 8, no. 2, pp. 165173, 2011.CrossRefGoogle Scholar
Deubel, T., Wanke, S., Weber, C., and Wedekind, F., “Modelling and manufacturing of a dragonfly wing as basis for bionic research,” International Design Conference – Design 2006, 2006.Google Scholar
Ritter, W., “The Hennebique construction method,” Die Bauweise Hennebique, Schweizerische Bauzeitung, vol. 33, no. 7, pp. 4161, 1899.Google Scholar
Mörsch, E., Der Eisenbetonbau, seine Theorie und Anwendung. Stuttgart: Verlag von Konrad Witter, 5 ed., 1922.Google Scholar
Schlaich, J. and Schäfer, K., “Design and detailing of structural concrete using strut-and-tie model,” The Structural Engineer, vol. 69, pp. 113125, March 19, 1991.Google Scholar
Muttoni, A., Schwartz, J., and Thürlimann, B., Design of Concrete Structures with Stress Fields. Berlin, Germany: Springer Science & Business Media, 1996.CrossRefGoogle Scholar
Drucker, D., “On structural concrete and the theorems of limit analysis,” International Association for Bridge and Structural Engineering (IABSE)-Reports, vol. 21, pp. 4559, 1961.Google Scholar
Nielsen, M., Braestrup, M., Jensen, B., and Bach, F., “Concrete plasticity, beam shear–shear in joints–punching shear,” Special Publication, Danish Society for Structural Science and Engineering, pp. 1129, 1978.Google Scholar
Marti, P., “Basic tools of reinforced concrete beam design,” ACI Journal, vol. 82, no. 4, pp. 4656, 1985.Google Scholar
Sigrist, V., Alvarez, M., and Kaufmann, W., “Shear and flexure in structural concrete beams,” in Comité Euro-International du Béton (CEB) Bulletin d’information No. 223, “Ultimate limit state design models”, A state-of-art report, 1995.Google Scholar
Reineck, K. H., Lourenço, M. S., Almeida, J. F., and Haugerud, S. A., “Paper 16: Gaining experience with strut-and-tie models for the design of concrete structures,” Design Examples for Strut-and-tie Models: Technical Report No. 61, p. 197, 2011.Google Scholar
Reineck, K. and Novak, L., Further Examples for the Design of Structural Concrete with Strut-and-Tie Models (No Title), 2010.Google Scholar
AASHTO-LRFD, Bridge Design Specifications (7th ed.). American Association of State Highway and Transportation Officials, 2014.Google Scholar
Standard AA, Building code requirements for structural concrete (ACI 318-11). American Concrete Institute, 2011 Aug.Google Scholar
CSA, Canadian Standards Association: Design of Concrete Structures, 2004.Google Scholar
EuroCode, Eurocode 2: Design of Concrete Structures – Part 1-1: General Rules and rules for buildings (EN 1992-1-1:2004). European Committee for Standardization, Brussels, 2004.Google Scholar
CEB-FIP, fib Model Code. International Federation for Structural Concrete (fib), Lausanne, Switzerland, 2010.Google Scholar
Fivet, C. and Zastavni, D., “A fully geometric approach for interactive constraint-based structural equilibrium design,” Computer-Aided Design, vol. 61, pp. 4257, 2015.CrossRefGoogle Scholar
Alic, V. and Persson, K., “Generating initial reinforcement layouts using graphic statics,” in Proceedings of the IASS Symposium, Creativity in Structural Design (Caitlin Mueller, Sigrid Adriaenssens, eds.), (MIT, Boston), July 1620, 2018.Google Scholar
Kirsch, U., Structural Optimization: Fundamentals and Applications. Berlin, Heidelberg: Springer Science and Business Media, 2012.Google Scholar
Zegard, T. and Paulino, G., “Grand – Ground structure based topology optimization for arbitrary 2D domains using matlab,” Structural and Multidisciplinary Optimization, vol. 50, no. 5, pp. 861882, 2014.CrossRefGoogle Scholar
Mozaffari, S., Akbarzadeh, M., and Vogel, T., “Graphic statics in a continuum: Strut-and-tie models for reinforced concrete,” Computers and Structures, vol. 240, p. 106335, 2020.CrossRefGoogle Scholar
Mozaffari, S., Computational Strut-and-Tie Modeling: Explorations of Algebraic Graphic Statics and Layout Optimization. PhD thesis, ETH Zurich, 2021.Google Scholar
Kaufmann, W., “Advanced structural concrete lecture notes,” 2019. [Accessed January 30, 2020].Google Scholar
Teng, T., Zhi, Y., Yu, K.-H., Yang, S., and Akbarzadeh, M., “Continuous multi-filament 3D printing for tension-compression structure components,” in Proceedings of IASS 2023 Symposium Integration of Design and Fabrication (Melbourne, Australia), July 10–14, 2023.Google Scholar
Bi, M., Xia, L., Tran, P., Li, Z., Wan, Q., Wang, L., Shen, W., Ma, G., and Xie, Y., “Continuous contour-zigzag hybrid toolpath for large format additive manufacturing,” Additive Manufacturing, vol. 55, p. 102822, 2022.CrossRefGoogle Scholar
Mirabolghasemi, A., Akbarzadeh, A., Rodrigue, D., and Therriault, D., “Thermal conductivity of architected cellular metamaterials,” Acta Materialia, vol. 174, pp. 6180, 2019.CrossRefGoogle Scholar
Shi, J. and Akbarzadeh, A., “Architected cellular piezoelectric metamaterials: Thermo-electro-mechanical properties,” Acta Materialia, vol. 163, pp. 91121, 2019.CrossRefGoogle Scholar
Chen, H., Shi, J., and Akbarzadeh, A., “Curved architected triboelectric metamaterials: Auxeticity-enabled enhanced figure-of-merit,” Advanced Functional Materials, vol. 33, no. 49, p. 2306022, 2023.CrossRefGoogle Scholar
Schaedler, T. A. and Carter, W. B., “Architected cellular materials,” Annual Review of Materials Research, vol. 46, pp. 187210, 2016.CrossRefGoogle Scholar
Hoseini, S. S., Seyedkanani, A., Najafi, G., Sasmito, A. P., and Akbarzadeh, A., “Multiscale architected porous materials for renewable energy conversion and storage,” Energy Storage Materials, vol. 59, p. 102768, 2023.CrossRefGoogle Scholar
Munsch, M., “Laser additive manufacturing of customized prosthetics and implants for biomedical applications,” in Laser additive manufacturing (pp. 399420). Woodhead Publishing, 2017.CrossRefGoogle Scholar
Gibson, L. J. and Ashby, M. F., Cellular Solids: Structure and Properties. Cambridge, UK: Cambridge University Press, 1999.Google Scholar
Savio, G., Rosso, S., Meneghello, R., and Concheri, G., “Geometric modeling of cellular materials for additive manufacturing in biomedical field: A review,” Applied Bionics and Biomechanics, vol. 2018, p. 1654782, 2018.Google ScholarPubMed
Greer, J. R. and Deshpande, V. S., “Three-dimensional architected materials and structures: Design, fabrication, and mechanical behavior,” MRS Bulletin, vol. 44, no. 10, pp. 750757, 2019.CrossRefGoogle Scholar
Granta Design Ltd, CES selector.” Computer software, 2005.Google Scholar
Schaedler, T. A., Jacobsen, A. J., Torrents, A., Sorensen, A. E., Lian, J., Greer, J. R., Valdevit, L., and Carter, W. B., “Ultralight metallic microlattices,” Science, vol. 334, no. 6058, pp. 962965, 2011.CrossRefGoogle ScholarPubMed
Deshpande, V., Ashby, M., and Fleck, N., “Foam topology: Bending versus stretching dominated architectures,” Acta Materialia, vol. 49, no. 6, pp. 10351040, 2001.CrossRefGoogle Scholar
Han, S. C. and Kang, K., “Another stretching-dominated micro-architectured material, shellular,” Materials Today, vol. 31, pp. 3138, 2019.CrossRefGoogle Scholar
Hong, J., Li, T., Zheng, H., and Ma, Y., “Applications of structural efficiency assessment method on structural-mechanical characteristics integrated design in aero-engines,” Chinese Journal of Aeronautics, vol. 33, no. 4, pp. 12601271, 2020.CrossRefGoogle Scholar
Lee, M. G., Lee, J. W., Han, S. C., and Kang, K., “Mechanical analyses of “shellular”, an ultralow-density material,” Acta Materialia, vol. 103, pp. 595607, 2016.CrossRefGoogle Scholar
Ashby, M. F., “The properties of foams and lattices,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 364, no. 1838, pp. 1530, 2006.CrossRefGoogle ScholarPubMed
Niknam, H., Akbarzadeh, A., Rodrigue, D., and Therriault, D., “Architected multi-directional functionally graded cellular plates,” Materials and Design, vol. 148, pp. 188202, 2018.CrossRefGoogle Scholar
Niknam, H. and Akbarzadeh, A., “Thermo-mechanical bending of architected functionally graded cellular beams,” Composites Part B: Engineering, vol. 174, p. 107060, 2019.CrossRefGoogle Scholar
Eynbeygui, M., Arghavani, J., Akbarzadeh, A., and Naghdabadi, R., “Anisotropic elastic-plastic behavior of architected pyramidal lattice materials,” Acta Materialia, vol. 183, pp. 118136, 2020.CrossRefGoogle Scholar
Kutz, M., ed., Mechanical Engineers’ Handbook. Hoboken, NJ: Wiley, 3rd ed., 2006.Google Scholar
Reddy, J. N., An Introduction to Nonlinear Finite Element Analysis: With Applications to Heat Transfer, Fluid Mechanics, and Solid Mechanics. Oxford, UK: Oxford University Press, 2014.CrossRefGoogle Scholar
Hsain, Z. and Pikul, J. H., “Low-energy room-temperature healing of cellular metals,” Advanced Functional Materials, vol. 29, no. 43, p. 1905631, 2019.CrossRefGoogle Scholar
Hsain, Z., Akbari, M., Prasanna, A., Jiang, Z., Akbarzadeh, M., and Pikul, J. H., “Electrochemical healing of fractured metals,” Advanced Materials, vol. 35, no. 24, pp. 110, 2023.CrossRefGoogle ScholarPubMed
Blaiszik, B., Kramer, S., Olugebefola, S., Moore, J., Sottos, N., and White, S., “Self-healing polymers and polymer composites,” Annual Review of Materials Research, vol. 40, pp. 179211, 2010.CrossRefGoogle Scholar
Herbst, F., Döhler, D., Michael, P., and Binder, W. H., “Self-healing polymers via supramolecular forces,” Macromolecular Rapid Communications, vol. 34, no. 3, pp. 203220, 2013.CrossRefGoogle ScholarPubMed
White, S. R., Sottos, N. R., Geubelle, P. H., Moore, J. S., Kessler, M. R., Sriram, S. R., Brown, E. N., and Viswanathan, S., “Autonomic healing of polymer composites,” Nature, vol. 409, no. 6822, pp. 794797, 2001.CrossRefGoogle ScholarPubMed
van Dijk, N. and van der Zwaag, S., “Self-healing phenomena in metals,” Advanced Materials Interfaces, vol. 5, no. 17, pp. 113, 2018.CrossRefGoogle Scholar
Inman, M. and Barr, L., “Diffusion of antimony in copper single crystals,” Acta Metallurgica, vol. 8, no. 2, pp. 112116, 1960.CrossRefGoogle Scholar
Hsain, Z., Room-Temperature Electrochemical Healing of Structural Metals. PhD thesis, University of Pennsylvania, 2022.Google Scholar
Dini, J. and Johnson, H., “Joining by electroplating,” Metals Engineering Quarterly, vol. 14, no. 1, pp. 612, 1974.Google Scholar
Dini, J. and Johnson, H., “Preparation of metals for plating: Ring shear tests,” Surface Technology, vol. 5, no. 5, pp. 405417, 1977.CrossRefGoogle Scholar
Dini, J. W. and Johnson, H. R., “Plating on some difficult-to-plate metals and alloys,” Tech. Rep., Sandia Laboratories, Livermore, CA, 1980.CrossRefGoogle Scholar
Johnson, H. R. and Dini, J. W., “Beryllium windows joined by electroplating,” Review of Scientific Instruments, vol. 46, no. 1, pp. 109110, 1975.CrossRefGoogle Scholar
Beach, W. F., “Xylylene polymers,” 2004.CrossRefGoogle Scholar
Hsain, Z., Jiang, Z., and Pikul, J. H., “Enabling effective electrochemical healing of structural steel,” Multifunctional Materials, vol. 4, no. 2, p. 024004, 2021.CrossRefGoogle Scholar
Daehn, K., Basuhi, R., Gregory, J., Berlinger, M., Somjit, V., and Olivetti, E. A., “Innovations to decarbonize materials industries,” Nature Reviews Materials, vol. 7, no. 4, pp. 275294, 2022.CrossRefGoogle Scholar
Pellegrino, S., and Calladine, C. R., “Matrix analysis of statically and kinematically indeterminate frameworks,” International Journal of Solids and Structures, vol. 22, no. 4, pp. 409428, 1986.CrossRefGoogle Scholar
Schenk, M., Guest, S. D., et al., “Origami folding: A structural engineering approach,” Origami, vol. 5, pp. 291304, 2011.Google Scholar
Filipov, E. T., Liu, K., Tachi, T., Schenk, M., and Paulino, G. H., “Bar and hinge models for scalable analysis of origami,” International Journal of Solids and Structures, vol. 124, pp. 2645, 2017. www.sciencedirect.com/science/article/pii/S0020768317302408CrossRefGoogle Scholar
Zhang, T., Kawaguchi, K., and Wu, M., “A folding analysis method for origami based on the frame with kinematic indeterminacy,” International Journal of Mechanical Sciences, vol. 146–147, pp. 234248, 2018. www.sciencedirect.com/science/article/pii/S0020740318315376CrossRefGoogle Scholar
Virtanen, P., et al., “SciPy 1.0: Fundamental algorithms for scientific computing in Python,” Nature Methods, vol. 17, pp. 261272, 2020.CrossRefGoogle ScholarPubMed
López, D. L., Veenendaal, D., Akbarzadeh, M., and Block, P., “Prototype of an ultra-thin, concrete vaulted floor system,” in Proceedings of IASS Annual Symposia 2014 (Vol. 2014, No. 15, pp. 1–8). International Association for Shell and Spatial Structures (IASS), Brasilia, Brazil.Google Scholar
Hawkins, W., Orr, J., Ibell, T., and Shepherd, P., “A design methodology to reduce the embodied carbon of concrete buildings using thin-shell floors,” Engineering Structures, vol. 207, p. 110195, 2020.CrossRefGoogle Scholar
Schwarz, H. A., Gesammelte Mathematische Abhandlungen. New York: Chelsea Publishing Company, 1933.Google Scholar
Neovius, E. R., “Bestimmung zweier spezieller periodischer minimal flachen,” Akad. Abhandlungen, Helsinki: J.C. Frenkel & Sohn, 1883.Google Scholar
Karcher, H. and Polthier, K., “Construction of triply periodic minimal surfaces,” Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, vol. 354, no. 1715, pp. 20772104, 1996.Google Scholar
Wu, Y., Fang, J., Wu, C., Li, C., Sun, G., and Li, Q., “Additively manufactured materials and structures: A state-of-the-art review on their mechanical characteristics and energy absorption,” International Journal of Mechanical Sciences, vol. 246, p. 108102, 2023.CrossRefGoogle Scholar
Blinn, J. F., “A generalization of algebraic surface drawing,” ACM Transactions on Graphics, vol. 1, no. 3, pp. 235256, 1982.CrossRefGoogle Scholar
Bernhard, M., Bolhassani, M., and Akbarzadeh, M., “Performative porosity – Adaptive infills for concrete parts,” in Proceedings of the IASS Annual Symposium 2020/21 (Surrey, UK), p. 1, 2021.Google Scholar
Zhi, Y., Chai, H., Teng, T., and Akbarzadeh, M., “Local optimization of self-supporting shell structures in 3D printing: A skeleton method,” in Proceedings of IASS 2023 Symposium Integration of Design and Fabrication (Melbourne, Australia), July 10–14, 2023.Google Scholar
Bathe, K.-J., Finite Element Procedures. Hoboken, NJ: Prentice Hall Pearson Education, 2006.Google Scholar
Bolhassani, M., Hamid, A. A., Lau, A. C., and Moon, F., “Simplified micro modeling of partially grouted masonry assemblages,” Construction and Building Materials, vol. 83, pp. 159173, 2015.CrossRefGoogle Scholar
Yavartanoo, F. and Kang, T. H.-K., “Dry-stack masonry wall modeling using finite-element method,” Journal of Structural Engineering, vol. 148, no. 11, p. 04022176, 2022.CrossRefGoogle Scholar
Gao, T., Shen, L., Shen, M., Chen, F., Liu, L., and Gao, L., “Analysis on differences of carbon dioxide emission from cement production and their major determinants,” Journal of Cleaner Production, vol. 103, pp. 160170, 2015.CrossRefGoogle Scholar
Koytsoumpa, E. I., Bergins, C., and Kakaras, E., “The CO2 economy: Review of CO2 capture and reuse technologies,” The Journal of Supercritical Fluids, vol. 132, pp. 316, 2018.CrossRefGoogle Scholar
Kou, S.-C., Zhan, B.-J., and Poon, C.-S., “Use of a CO2 curing step to improve the properties of concrete prepared with recycled aggregates,” Cement and Concrete Composites, vol. 45, pp. 2228, 2014.CrossRefGoogle Scholar
Zanni, G. and Pennock, G. R., “A unified graphical approach to the static analysis of axially loaded structures,” Mechanism and Machine Theory, vol. 44, no. 12, pp. 21872203, 2009.CrossRefGoogle Scholar
Williams, C. and McRobie, A., “Graphic statics using discontinuous airy stress functions,” International Journal of Space Structures, vol. 31, no. 2–4, pp. 121134, 2016.CrossRefGoogle Scholar
McRobie, A., “The geometry of structural equilibrium,” Royal Society Open Science, vol. 4, no. 160759, 2017.Google ScholarPubMed
McRobie, A., “Rankine reciprocals with Zero Bars,” ResearchGate, 2017.Google Scholar
McRobie, A., “A complete graphic statics for self-stressed 3D frames,” in Proceedings of the IASS Symposium 2018, Creativity in Structural Design (Mueller, C. and Adriaenssens, S., eds.) (MIT, Boston, MA), International Association of Shell and Spatial Structures, July 2016.Google Scholar
McRobie, A., Konstantatou, M., Athanasopoulos, G., and Hannigan, L., “Graphic kinematics, visual virtual work and elastographics,” Royal Society Open Science, vol. 4, no. 170202, 2017.CrossRefGoogle ScholarPubMed
Williot, V.-J., Notions pratiques sur la statique graphique. Paris: E. Lacroix, 1878.Google Scholar
Mohr, O. C., “Über Geschwindigkeitspläne und Beschleunigungspläne kinematischer Kette,” Der Civilingenieur, vol. 33, no. 631, pp. 879893, 1887.Google Scholar
Müller-Breslau, H. F. B., Die graphische Statik der Baukonstruktionen, Vol. 1. Stuttgart, Germany: Alfred Kröner, 1905.Google Scholar
Müller-Breslau, H. F. B., Die graphische Statik der Baukonstruktionen, Vol. 2. Leipzig, Germany: Baumgärtner, 1892.Google Scholar
Rao, D. S. P., Graphical Methods in Structural Analysis. Hyderabad, India: Universities Press, 1997.Google Scholar
McRobie, A., “Maxwell and Rankine reciprocal diagrams via Minkowski sums for 2D and 3D trusses under load,” International Journal of Space Structures, vol. 31, p. 203216, 2016.CrossRefGoogle Scholar
Zanni, G. and Pennock, G., “A unified graphical approach to the static analysis of axially loaded structures,” Mechanism and Machine Theory, vol. 44, pp. 21872203, 2009.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Masoud Akbarzadeh, University of Pennsylvania
  • Book: Polyhedral Graphical Statics
  • Online publication: 13 March 2025
  • Chapter DOI: https://doi.org/10.1017/9781108859769.013
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Masoud Akbarzadeh, University of Pennsylvania
  • Book: Polyhedral Graphical Statics
  • Online publication: 13 March 2025
  • Chapter DOI: https://doi.org/10.1017/9781108859769.013
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Masoud Akbarzadeh, University of Pennsylvania
  • Book: Polyhedral Graphical Statics
  • Online publication: 13 March 2025
  • Chapter DOI: https://doi.org/10.1017/9781108859769.013
Available formats
×