Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-13T10:28:27.009Z Has data issue: false hasContentIssue false

9 - Phycobiliproteins

Published online by Cambridge University Press:  05 March 2012

Suzanne Roy
Affiliation:
Université du Québec à Rimouski, Canada
Carole A. Llewellyn
Affiliation:
Plymouth Marine Laboratory
Einar Skarstad Egeland
Affiliation:
University of Nordland, Norway
Geir Johnsen
Affiliation:
Norwegian University of Science and Technology, Trondheim
Get access

Summary

Introduction

Phycobiliproteins are the major light-harvesting pigments of cyanobacteria, red algae, glaucocystophytes (cyanelles) and cryptophytes (MacColl and Guard-Friar, 1987; Sidler, 1994). They are characterized by linear tetrapyrrolic chromophores, known as bilins, that are covalently bound to cysteines of the apoproteins via thioether bonds, and they harvest light for photosynthesis efficiently in the ‘green gap’ where chlorophylls absorb only poorly (Sidler, 1994). Unlike isolated chlorophyll chromophores, free bilins are photophysically unsuited as photoreceptors: they absorb light only poorly and their excited states are very short lived, thereby leading to rapid conversion of excitation energy to heat (Scheer, 1982; Braslavsky et al., 1983; Falk, 1989). These properties also prevail in denatured biliproteins. The photophysical properties of native biliproteins are, by contrast, much more favourable: the light absorption of the chromophores is increased by almost one order of magnitude and the excited lifetimes by four orders of magnitude, which, in combination, render them excellent photoreceptors. The absorption of individual chromophores can, moreover, be shifted by almost 100 nm, and also the circular dichroism of biliproteins is modulated drastically during folding (see Scheer, 2003 and Kupka and Scheer, 2008 for leading references). The underlying nature of these molecular adaptations, which are still only partly understood, consists mainly of extensive chromophore protein interactions by which the chromophore conformation and dynamics are modulated. Covalent binding to the apoproteins appears to be important in assisting these interactions. Although cysteine mutants indicate that covalent binding is not absolutely necessary for function (Gindt et al., 1994; Jorissen et al., 2002; Inomata et al., 2006), it does assist functional optimization (Gindt et al., 1994) because it stabilizes both the labile chromophores (Scheer, 1982) and proteins (Anderson and Toole, 1998; Shen et al., 2008a, b). In cyanobacteria and red algae, up to four bilin chromophores are post-translationally attached, via thioether bonds, to specific cysteines of up to a dozen or even more individual proteins (Sidler, 1994); further, an additional modification in β-subunits is the methylation of a conserved asparagine-72 (Swanson and Glazer, 1990; Schluchter et al., 2010). Chromophore attachment also appears to be a pre-requisite for the assembly of phycobilisomes (PBS) (Anderson and Toole, 1998) which are the light-harvesting antennae of blue-green algae and of both red and cryptophyte algae.

Type
Chapter
Information
Phytoplankton Pigments
Characterization, Chemotaxonomy and Applications in Oceanography
, pp. 375 - 411
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adir, N. 2005 Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giantPhotosynth. Res 85 15CrossRefGoogle ScholarPubMed
Adir, N.Lerner, N. 2003 The crystal structure of a novel unmethylated form of c-phycocyanin, a possible connector between cores and rods in phycobilisomesJ. Biol. Chem 278 25926CrossRefGoogle Scholar
Adir, N.Vainer, R.Lerner, N. 2002 Refined structure of c-phycocyanin from the cyanobacterium at 1.6 Å: insights into the role of solvent molecules in thermal stability and co-factor structureBiochim. Biophys. Acta 1556 168CrossRefGoogle ScholarPubMed
Anderson, L. K.Toole, C. M. 1998 A model for early events in the assembly pathway of cyanobacterial phycobilisomesMol. Microbiol 30 467CrossRefGoogle ScholarPubMed
Arciero, D. M.Bryant, D. A.Glazer, A. N. 1988 In vitro attachment of bilins to apophycocyanin. 1. Specific covalent adduct formation at cysteinyl residues involved in phycocyanobilin binding in C-phycocyaninJ. Biol. Chem 263 18343Google Scholar
Beale, S. I. 1993 Biosynthesis of phycobilinsChem. Rev 93 785CrossRefGoogle Scholar
Beale, S. I. 1994 Biosynthesis of cyanobacterial tetrapyrrole pigments: Hemes, chlorophylls and phycobilinsThe Molecular Biology of CyanobacteriaBryant, D. A.DordrechtKluwer519CrossRefGoogle Scholar
Berkelman, T.Lagarias, J. C. 1986 Visualization of bilin-linked peptides and proteins in polyacrylamide gelsAnal. Biochem 156 194CrossRefGoogle ScholarPubMed
Bishop, J. E.Rapoport, H.Klotz, A. V.Chan, C. F.Glazer, A. N.Füglistaller, P.Zuber, H. 1987 Chromopeptides from phycoerythrocyanin. Structure and linkage of the three bilin groupsJ. Am. Chem. Soc 109 875CrossRefGoogle Scholar
Björn, L. O.Björn, G. S. 1980 Photochromic pigments and photoregulation in blue-green algaePhotochem. Photobiol 32 849CrossRefGoogle Scholar
Blot, N.Wu, X. J.Thomas, J. C.Zhang, J.Garczarek, L.Böhm, S.Tu, J. M.Zhou, M.Ploscher, M.Eichacker, L.Partensky, F.Scheer, H.Zhao, K. H. 2009 Phycourobilin in trichromatic phycocyanin from oceanic cyanobacteria is formed post-translationally by a phycoerythrobilin lyase-isomeraseJ. Biol. Chem 284 9290CrossRefGoogle ScholarPubMed
Braslavsky, S. E.Holzwarth, A. R.Schaffner, K. 1983 Solution conformations, photophysics, and photochemistry of bili-pigments – bilirubin and biliverdin dimethylesters and related linear tetrapyrrolesAngew. Chem. Int. Ed. Engl 22 656CrossRefGoogle Scholar
Brejc, K.Ficner, R.Huber, R.Steinbacher, S. 1995 Isolation, crystallization,crystal structure analysis and refinement of allophycocyanin from the cyanobacterium at 2.3 Å resolutionJ. Mol. Biol 249 424CrossRefGoogle ScholarPubMed
Böhm, S.Endres, S.Scheer, H.Zhao, K.-H. 2007 Biliprotein chromophore attachment: chaperone-like function of PecE-subunit of α-phycoerythrocyanin lyaseJ. Biol. Chem 282 25357CrossRefGoogle ScholarPubMed
Cornejo, J.Beale, S. I. 1997 Phycobilin biosynthetic reactions in extracts of cyanobacteriaPhotosynth. Res 51 223CrossRefGoogle Scholar
Cornejo, J.Willows, R. D.Beale, S. I. 1998 Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from sp. PCC 6803Plant J 15 99CrossRefGoogle ScholarPubMed
Dammeyer, T.Frankenberg-Dinkel, N. 2006 Insights into phycoerythrobilin biosynthesis point toward metabolic channelingJ. Biol. Chem 281 27081CrossRefGoogle ScholarPubMed
Dammeyer, T.Frankenberg-Dinkel, N. 2008 Function and distribution of bilin biosynthesis enzymes in photosynthetic organismsPhotochem. Photobiol. Sci 7 1121CrossRefGoogle ScholarPubMed
Dammeyer, T.Bagby, S. C.Sullivan, M. B.Chisholm, S. W.Frankenberg-Dinkel, N. 2008 Efficient phage-mediated pigment biosynthesis in oceanic cyanobacteriaCurr. Biol 18 442CrossRefGoogle ScholarPubMed
Debreczeny, M. P.Sauer, K.Zhou, J.Bryant, D. A. 1995 Comparison of calculated and experimentally resolved rate constants for excitation energy transfer in C-phycocyanin. 2. trimersJ. Phys. Chem 99 8420CrossRefGoogle Scholar
Doust, A. B.Marai, C. N. J.Harrop, S. J.Wilk, K. E.Curmi, P. M. G.Scholes, G. D. 2004 Developing a structure–function model for the cryptophyte phycoerythrin 545 using ultrahigh resolution crystallography and ultrafast laser spectroscopyJ. Mol. Biol 344 135CrossRefGoogle ScholarPubMed
Dürring, M.Huber, R.Bode, W. 1988 The structure of gamma-N-methylasparagine in C-phycocyanin from and FEBS Lett 236 167CrossRefGoogle Scholar
Dürring, M.Huber, R.Bode, W.Rümbeli, R.Zuber, H. 1990 Refined three-dimensional structure of phycoerythrocyanin from the cyanobacterium at 2.7 ÅJ. Mol. Biol 211 633CrossRefGoogle Scholar
Essen, L. -O.Mailliet, J.Hughes, J. 2008 The structure of a complete phytochrome sensory module in the Pr ground stateProc. Natl. Acad. Sci. USA 105 14709CrossRefGoogle ScholarPubMed
Everroad, C.Six, C.Partensky, F.Thomas, J. C.Holtzendorff, J.Wood, A. M. 2006 Biochemical bases of type IV chromatic adaptation in marine sppJ. Bacteriol 188 3345CrossRefGoogle ScholarPubMed
Fairchild, C. D.Glazer, A. N. 1994 Nonenzymatic bilin addition to the gamma subunit of an apophycoerythrinJ. Biol. Chem 269 28988Google Scholar
Fairchild, C. D.Glazer, A. N. 1994 Oligomeric structure, enzyme kinetics, and substrate specificity of the phycocyanin alpha subunit phycocyanobilin lyaseJ. Biol. Chem 269 8686Google ScholarPubMed
Falk, H. 1989 The Chemistry of Linear Oligopyrroles and Bile PigmentsViennaSpringerCrossRef
Ficner, R.Huber, R. 1993 Refined crystal structure of phycoerythrin from at 2.3-nm resolution and localization of the γ subunitEur. J. Biochem 218 103CrossRefGoogle Scholar
Fisher, W. R.Taniuchi, H.Anfinsen, C. B. 1973 On the role of heme in the formation of the structure of cytochrome cJ. Biol. Chem 248 3188Google ScholarPubMed
Frankenberg, N.Lagarias, J. C. 2003 Biosynthesis and biological functions of bilinsThe Porphyrin HandbookKadish, K. M.Smith, K. M.Guilard, R.AmsterdamAcademic Press211CrossRefGoogle Scholar
Frankenberg, N.Lagarias, J. C. 2003 Phycocyanobilin:ferredoxin oxidoreductase of . PCC 7120. Biochemical and spectroscopicJ. Biol. Chem 278 9219CrossRefGoogle ScholarPubMed
Frankenberg, N.Mukougawa, K.Kohchi, T.Lagarias, J. C. 2001 Functional genomic analysis of the HY2 family of ferredoxin-dependent bilin reductases from oxygenic photosynthetic organismsPlant Cell 13 965CrossRefGoogle ScholarPubMed
Franklin, K. A.Linley, P. J.Montgomery, B. L.Lagarias, J. C.Thomas, B.Jackson, S. D.Terry, M. J. 2003 Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductaseThe Plant J 35 717CrossRefGoogle ScholarPubMed
Füglistaller, P.Suter, F.Zuber, H. 1983 The complete amino-acid-sequence of both subunits of phycoerythrocyanin from the thermophilic cyanobacterium Hoppe Seyler's Z. Physiol. Chem 364 691CrossRefGoogle ScholarPubMed
Gantt, E. 1986 PhycobilisomesPhotosynthesis III: Photosynthetic Membranes and Light-Harvesting SystemsStaehelin, L. A.Arntzen, C. J.BerlinSpringer260Google Scholar
Gantt, E.Conti, S. F. 1966 Granules associated with the chloroplast lamellae of J. Cell Biol 29 423CrossRefGoogle Scholar
Gantt, E.Edwards, M. R.Provasoli, L. 1971 Chloroplast structure of the Cryptophyceae. Evidence for phycobiliproteins within intrathylakoidal spacesJ. Cell Biol 48 280CrossRefGoogle ScholarPubMed
Gantt, E.Grabowski, B.Cunningham, F. X. 2003 Antenna systems of red algae: phycobilisomes with photosystem II and chlorophyll complexes with Photosystem ILight-Harvesting Antennas in PhotosynthesisGreen, B.Parson, W.DordrechtKluwer307CrossRefGoogle Scholar
Gindt, Y. M.Zhou, J. H.Bryant, D. A.Sauer, K. 1994 Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: Assignment of excited state energies to the Lcm, β18 and αAP–B chromophoresBiochim. Biophys. Acta 1186 153CrossRefGoogle Scholar
Glauser, M.Sidler, W.Zuber, H. 1993 Isolation, characterization and reconstitution of phycobiliprotein rod-core linker polypeptide complexes from the phycobilisome of Photochem. Photobiol 57 344CrossRefGoogle Scholar
Glazer, A. N. 1984 Phycobilisome – A macromolecular complex optimized for light energy transferBiochim. Biophys. Acta 768 29CrossRefGoogle Scholar
Glazer, A. N. 1985 Light harvesting by phycobilisomesAnn. Rev. Biophys. Biophys. Chem 14 47CrossRefGoogle ScholarPubMed
Glazer, A. N. 1988 PhycobiliproteinsMeth. Enzymol 167 291CrossRefGoogle ScholarPubMed
Glazer, A. N. 1994 Adaptive variations in phycobilisome structureAdv. Mol. Cell Biol 10 119CrossRefGoogle Scholar
Glazer, A. N.Fang, S. 1973 Chromophore content of blue-green algal phycobiliproteinsJ. Biol. Chem 248 659Google ScholarPubMed
Glazer, A. N.Hixson, C. S. 1975 Characterization of R-Phycocyanin. Chromophore content of R-Phycocyanin and C-PhycoerythrinJ. Biol. Chem 250 5487Google ScholarPubMed
Glazer, A. N.Hixson, C. S. 1977 Subunit structure and chromophore composition of Rhodophytan phycoerythrinsJ. Biol. Chem 252 32Google ScholarPubMed
Glazer, A. N.Wedemayer, G. J. 1995 Cryptomonad biliproteins – an evolutionary perspectivePhotosynth. Res 46 93CrossRefGoogle ScholarPubMed
Gomez-Lojero, C.Perez-Gomez, B.Shen, G.Schluchter, W. M.Bryant, D. A. 2003 Interaction of ferredoxin:NADP+ oxidoreductase with phycobilisomes and phycobilisome substructures of the cyanobacterium . strain PCC 7002Biochemistry 42 13800CrossRefGoogle ScholarPubMed
Gottschalk, L.Fischer, R.Lottspeich, F.Scheer, H. 1991 Origin of the red-shifted absorption in phycocyanin 632 from Photochem. Photobiol 54 283CrossRefGoogle Scholar
Grossman, A. R.Schaefer, M. R.Chiang, G. G.Collier, J. L. 1993 The phycobilisome, a light-harvesting complex responsive to environmental conditionsMicrobiol. Rev 57 725Google ScholarPubMed
Grossman, A. R.van Waasbergen, L. G.Kehoe, D. 2003 Environmental regulation of phycobilisome biosynthesisLight-Harvesting Antennas in PhotosynthesisGreen, B.Parson, W.DordrechtKluwer471CrossRefGoogle Scholar
Hahn, J.Kühne, R.Schmieder, P. 2007 Solution-state 15N NMR spectroscopic study of α-C-phycocyanin: implications for the structure of the chromophore-binding pocket of the cyanobacterial phytochrome Cph1ChemBioChem 8 2249CrossRefGoogle Scholar
Hess, W. R.Partensky, F.van der Staay, G. W.Garcia-Fernandez, J. M.Borner, T.Vaulot, D. 1996 Coexistence of phycoerythrin and a chlorophyll / antenna in a marine prokaryoteProc. Natl. Acad. Sci. USA 93 11126CrossRefGoogle Scholar
Hess, W. R.Rocap, G.Ting, C. S.Larimer, F.Stilwagen, S.Lamerdin, J.Chisholm, S. W. 2001 The photosynthetic apparatus of : Insights through comparative genomicsPhotosynth. Res 70 53CrossRefGoogle ScholarPubMed
Hirose, Y.Shimada, T.Narikawa, R.Katayama, M.Ikeuchi, M. 2008 Cyanobacteriochrome CcaS is the green light receptor that induces the expression of phycobilisome linker proteinProc. Natl. Acad. Sci. USA 105 9528CrossRefGoogle ScholarPubMed
Hu, I. C.Lee, T. R.Lin, H. F.Chiueh, C. C.Lyu, P. C. 2006 Biosynthesis of fluorescent allophycocyanin α-subunits by autocatalytic bilin attachmentBiochemistry 45 7092CrossRefGoogle ScholarPubMed
Ikeuchi, M.Ishizuka, T. 2008 Cyanobacteriochromes: a new superfamily of tetrapyrrole-binding photoreceptors in cyanobacteriaPhotochem. Photobiol. Sci 7 1159CrossRefGoogle ScholarPubMed
Inomata, K.Noack, S.Hammam, M. A.Khawn, H.Kinoshita, H.Murata, Y.Michael, N.Scheerer, P.Krauss, N.Lamparter, T. 2006 Assembly of synthetic locked chromophores with phytochromes Agp1 and Agp2J. Biol. Chem 281 28162CrossRefGoogle ScholarPubMed
Ishizuka, T.Narikawa, R.Kohchi, T.Katayama, M.Ikeuchi, M. 2007 Cyanobacteriochrome TePixJ of harbors phycoviolobilin as a chromophorePlant Cell Physiol 48 1385CrossRefGoogle ScholarPubMed
Jorissen, H. J.Quest, B.Lindner, I.Tandeau de Marsac, N.Gärtner, W. 2002 Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerizationPhotochem. Photobiol 75 5542.0.CO;2>CrossRefGoogle ScholarPubMed
Kahn, K.Mazel, D.Houmard, J.Tandeau de Marsac, N.Schaefer, M. R. 1997 A role for cpeYZ in cyanobacterial phycoerythrin biosynthesisJ. Bacteriol 179 998CrossRefGoogle ScholarPubMed
Kehoe, D. M.Gutu, A. 2006 Responding to color: The regulation of complementary chromatic adaptationAnn. Rev. Plant Biol 57 127CrossRefGoogle ScholarPubMed
Kirilovsky, D. 2007 Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanismPhotosynth. Res 93 7CrossRefGoogle ScholarPubMed
Kneip, C.Parbel, A.Förstendorf, H.Scheer, H.Siebert, F.Hildebrandt, P. 1998 FT-NIR-resonance Raman spectroscopic study of the α-subunit of phycoerythrocyanin and phycocyanin from the cyanobacterium J. Raman. Spectr 29 9393.0.CO;2-X>CrossRefGoogle Scholar
Kohchi, T.Mukougawa, K.Frankenberg, N.Masuda, M.Yokota, A.Lagarias, J. C. 2001 The gene encodes phytochromobilin synthase, a ferredoxin-dependent biliverdin reductasePlant Cell 13 425CrossRefGoogle ScholarPubMed
Köst-Reyes, E.Schneider, S.John, W.Fischer, R.Scheer, H.Köst, H. -P. 1988 Fast preparative isoelectric focusing of phycocyanin subunits in layers of granulated gelsElectrophoresis 8 335CrossRefGoogle Scholar
Kupka, M.Scheer, H. 2008 Unfolding of C-phycocyanin followed by loss of non-covalent chromophore-protein interactions: 1. Equilibrium experimentsBiochim. Biophys. Acta 1777 94CrossRefGoogle ScholarPubMed
Lämmli, U. K. 1970 Cleavage of structural proteins during the assembly of the head of bacteriophage T4Nature 227 680CrossRefGoogle Scholar
Lamparter, T. 2004 Evolution of cyanobacterial and plant phytochromesFEBS Lett 573 1CrossRefGoogle ScholarPubMed
Lindner, I. 2000
Lindner, I.Knipp, B.Braslavsky, S. E.Gärtner, W.Schaffner, K. 1998 A novel chromophore selectively modifies the spectral properties of one of the two stable states of the plant photoreceptor phytochromeAngew. Chem. Int. Ed 37 18433.0.CO;2-W>CrossRefGoogle Scholar
MacColl, R.Guard-Friar, D. 1987 PhycobiliproteinsBoca RatonCRC Press
Manitto, P.Monti, D. 1979 Oxidation of bilirubin with chloranil: A simple method for preparing isomerically pure biliverdinExperientia 35 9CrossRefGoogle Scholar
Marquardt, J.Senger, H.Miyashita, H.Miyachi, S.Morschel, E. 1997 Isolation and characterization of biliprotein aggregates from , a -like prokaryote containing mainly chlorophyll FEBS Lett 410 428CrossRefGoogle ScholarPubMed
Mazel, D.Houmard, J.De Marsac, N. T. 1988 A multigene family in . PCC 7601 encodes Phycocyanin, the major component of the cyanobacterial light-harvesting antennaMol. Gen. Genet 211 296CrossRefGoogle ScholarPubMed
Mazel, D.Marlière, P. 1989 Adaptive eradication of methionine and cysteine from cyanobacterial light-harvesting proteinsNature 341 245CrossRefGoogle ScholarPubMed
Mimuro, M.Kikuchi, H. 2003 Antenna systems and energy transfer in Cyanophyta and RhodophytaLight-Harvesting Antennas in PhotosynthesisGreen, B.Parson, W.DordrechtKluwer281CrossRefGoogle Scholar
Montgomery, B. L.Casey, E. S.Grossman, A. R.Kehoe, D. M. 2004 AplA, a member of a new class of phycobiliproteins lacking a traditional role in photosynthetic light harvestingJ. Bacteriol 186 7420CrossRefGoogle ScholarPubMed
Morsy, F. M.Nakajima, M.Yoshida, T.Fujiwara, T.Sakamoto, T.Wada, K. 2008 Subcellular localization of ferredoxin-NADP+ oxidoreductase in phycobilisome retaining oxygenic photosynthetic organismsPhotosynth. Res 95 73CrossRefGoogle Scholar
Moss, G. P. 1988 IUPAC-IUB Joint commission biochemical nomenclature (JCBN). Nomenclature of tetrapyrroles. Recommendation 1986Eur. J. Biochem 178 277CrossRefGoogle Scholar
Nagy, J. O.Bishop, J. E.Klotz, A. V.Glazer, A. N.Rapoport, H. 1985 Bilin attachment sites in the alpha-subunits, beta-subunits and gamma-subunits of R-phycoerythrin – structural studies on singly and doubly linked phycourobilinsJ. Biol. Chem 260 4864Google Scholar
Nield, J.Rizkallah, P. J.Barber, J.Chayen, N. E. 2003 The 1.45 Å three-dimensional structure of C-phycocyanin from the thermophilic cyanobacterium J. Struct. Biol 141 149CrossRefGoogle ScholarPubMed
O'Carra, P.Oh'Eocha, C. 1966 Bilins released from algae and biliproteins by methanol extractionPhytochemistry 5 993CrossRefGoogle Scholar
Ong, L. J.Glazer, A. N. 1988 Sructural studies of phycobiliproteins in unicellular marine cyanobacteriaLight-Energy Transduction in Photosynthesis: Higher Plant and Bacterial ModelsStevens, S. E.Bryant, D. A.American Society of Plant Physiologists102Google Scholar
Parbel, A.Zhao, K. H.Breton, J.Scheer, H. 1997 Chromophore assignment in phycoerythrocyanin from Photosynth. Res 54 25CrossRefGoogle Scholar
Porra, R. J.Pfündel, E. E.Engel, N. 1997 Metabolism and function of photosynthetic pigmentsPhytoplankton Pigments in Oceanography: Guidelines to Modern MethodsJeffrey, S. W.Mantoura, R. F. C.Wright, S. W.ParisUNESCO Publishing85Google Scholar
Raps, S. 1990 Differentiation between phycobiliprotein and colorless linker polypeptides by fluorescence in the presence of ZnSO4Plant Physiol 92 358CrossRefGoogle Scholar
Reuter, W.Westermann, M.Brass, S.Ernst, A.Böger, P.Wehrmeyer, W. 1994 Structure, composition, and assembly of paracrystalline phycobiliproteins in sp. strain BO 8402 and of phycobilisomes in the derivative strain BO 9201J. Bacteriol 176 896CrossRefGoogle ScholarPubMed
Reuter, W.Wiegand, G.Huber, R.Than, M. E. 1999 Structural analysis at 2.2 Å of orthorhombic crystals presents the asymmetry of the allophycocyanin-linker complex, AP Lc7.8, from phycobilisomes of Proc. Natl. Acad. Sci. USA 96 1363CrossRefGoogle Scholar
Ritter, S.Hiller, R. G.Wrench, P. M.Welte, W.Diederichs, K. 1999 Crystal structure of a phycourobilin-containing phycoerythrin at 1.90 Å resolutionJ. Struct. Biol 126 86CrossRefGoogle ScholarPubMed
Rockwell, N. C.Su, Y. -S.Lagarias, J. C. 2006 Phytochrome structure and signaling mechanismsAnn. Rev. Plant Biol 57 837CrossRefGoogle ScholarPubMed
Rüdiger, W.Thümmler, F. 1991 Phytochrome, the visual pigment of plantsAngew. Chem. Int. Ed. Engl 30 1216CrossRefGoogle Scholar
Saunée, N. A.Williams, S. R.Bryant, D. A.Schluchter, W. M. 2008 Biogenesis of phycobiliproteins. II. CpcS-I and CpcU comprise the heterodimeric bilin lyase that attaches phycocyanobilin to Cys-82 of β–phycocyanin and Cys-81 of allophycocyanin subunits in . PCC 7002J. Biol.Chem 283 7513CrossRefGoogle ScholarPubMed
Scheer, H. 1976 Studies on plant bile pigments: Characterization of a model for the phytochrome Pr chromophoreZ. Naturforsch 31 413Google Scholar
Scheer, H. 1982 Phycobiliproteins: Molecular aspects of photosynthetic antenna systemsLight Reaction Path of PhotosynthesisFong, F. K.BerlinSpringer7CrossRefGoogle Scholar
Scheer, H. 1985 Model compounds for the phytochrome chromophoreTechniques in PhotomorphogenesisSmith, H.Holmes, M. G.New YorkAcademic Press227Google Scholar
Scheer, H. 2003 The pigmentsLight-Harvesting Antennas in PhotosynthesisGreen, B.Parson, W.DordrechtKluwer29CrossRefGoogle Scholar
Scheer, H.Zhao, K. -H. 2008 Biliprotein maturation: the chromophore attachmentMol. Microbiol 68 263CrossRefGoogle ScholarPubMed
Scheerer, P.Michael, N.Park, J. H.Noack, S.Forster, C.Hammam, M. A.Inomata, K.Choe, H. W.Lamparter, T.Krauss, N. 2006 Crystallization and preliminary X-ray crystallographic analysis of the N-terminal photosensory module of phytochrome Agp1, a biliverdin-binding photoreceptor from J. Struct. Biol 153 97CrossRefGoogle Scholar
Schirmer, T.Bode, W.Huber, R. 1987 Refined three-dimensional structures of two cyanobacterial C-phycocyanins at 2.1 and 2.5 Å resolution – A common principle of phycobilin-protein interactionJ. Mol. Biol 196 677CrossRefGoogle ScholarPubMed
Schirmer, T.Bode, W.Huber, R. 1988 High-resolution crystal structure of C-Phycocyanin and polarized optical spectra of single crystalsPhotosynthetic Light-Harvesting Systems: Organization and FunctionScheer, H.Schneider, S.BerlinDe Gruyter195Google Scholar
Schirmer, T.Bode, W.Huber, R.Sidler, W.Zuber, H. 1985 X-Ray crystallographic structure of the light-harvesting biliprotein C-phycocyanin from the thermophilic cyanobacterium and its resemblance to globin structuresJ. Mol. Biol 184 257CrossRefGoogle ScholarPubMed
Schluchter, W. M.Shen, G.Alvey, R. M.Biswas, A.Saunée, N.Williams, S. R.Miller, C. A.Bryant, D. A. 2010 Phycobiliprotein biosynthesis in cyanobacteria: structure and function of enzymes involved in post-translational modificationRecent Advances in Phototrophic ProkaryotesHallenbeck, P. C.New YorkSpringer211CrossRefGoogle Scholar
Schluchter, W. M.Bryant, D. A. 2002 Analysis and reconstitution of phycobiliproteins: methods for the characterization of bilin attachment reactionsHeme, Chlorophyll, and BilinsSmith, A. G.Witty, M.TotowaHumana Press311Google Scholar
Schluchter, W. M.Glazer, A. N. 1999 Biosynthesis of phycobiliproteins in CyanobacteriaThe Phototrophic ProkaryotesPeschek, G. A.Löffelhardt, W.Schmetterer, G.New YorkKluwer Academic/Plenum Publishers83CrossRefGoogle Scholar
Schmidt, M.Krasselt, A.Reuter, W. 2006 Local protein flexibility as a prerequisite for reversible chromophore isomerization in alpha-phycoerythrocyaninBiochim. Biophys. Acta 1764 55CrossRefGoogle ScholarPubMed
Schmidt, M.Patel, A.Zhao, Y.Reuter, W. 2007 Structural basis for the photochemistry of α-PhycoerythrocyaninBiochemistry 46 416CrossRefGoogle ScholarPubMed
Schram, B. L.Kroes, H. H. 1971 Structure of phycocyanobilinEur. J. Biochem 19 581CrossRefGoogle ScholarPubMed
Shen, G.Saunee, N. A.Gallo, E.Begovic, Z.Schluchter, W. M.Bryant, D. A. 2004 Identification of novel phycobiliprotein lyases in cyanobacteriaPS 2004 Light-Harvesting Systems WorkshopNiederman, R. A.Blankenship, R. E.Frank, H.Robert, B.van Grondelle, R.Sainte-AdèleQuébec, Canada14Google Scholar
Shen, G.Saunee, N. A.Williams, S. R.Gallo, E. F.Schluchter, W. M.Bryant, D. A. 2006 Identification and characterization of a new class of bilin lyase: the cpcT gene encodes a bilin lyase responsible for attachment of phycocyanobilin to Cys-153 on the β-subunit of phycocyanin in . PCC 7002J. Biol. Chem 281 17768CrossRefGoogle ScholarPubMed
Shen, G.Leonard, H. S.Schluchter, W. M.Bryant, D. A. 2008 CpcM posttranslationally methylates asparagine-71/72 of phycobiliprotein beta subunits in sp. strain PCC 7002 and sp. strain PCC 6803J. Bacteriol 190 4808CrossRefGoogle ScholarPubMed
Shen, G.Schluchter, W. M.Bryant, D. A. 2008 Biogenesis of phycobiliproteins. I. and mutants of the cyanobacterium, . PCC 7002 define a heterodimeric phycocyanobilin lyase specific for β-phycocyanin and allophycocyanin subunitsJ. Biol. Chem 283 7503CrossRefGoogle ScholarPubMed
Sidler, W. A. 1994 Phycobilisome and phycobiliprotein structuresThe Molecular Biology of CyanobacteriaBryant, D. A.DordrechtKluwer139CrossRefGoogle Scholar
Sidler, W.Zuber, H. 1988 Structural and phylogenetic relationships of Phycoerythrins from cyanobacteria, red algae and CryptophyceaePhotosynthetic Light-Harvesting Systems, Organization and FunctionScheer, H.Schneider, S.BerlinDe Gruyter49Google Scholar
Six, C.Thomas, J. C.Garczarek, L.Ostrowski, M.Dufresne, A.Blot, N.Scanlan, D. J.Partensky, F. 2007 Diversity and evolution of phycobilisomes in marine spp.: a comparative genomics studyGenome Biol 8 R259.1CrossRefGoogle ScholarPubMed
Stec, B.Troxler, R. F.Teeter, M. M. 1999 Crystal structure of C-phycocyanin from provides a new perspective on phycobilisome assemblyBiophys. J 76 2912CrossRefGoogle ScholarPubMed
Steglich, C.Frankenberg-Dinkel, N.Penno, S.Hess, W. R. 2005 A green light-absorbing phycoerythrin is present in the high-light-adapted marine cyanobacterium . MED4Environ. Microbiol 7 1611CrossRefGoogle Scholar
Storf, M. 2004 Überexpression und Rekonstitution der alpha-Untereinheit des Phycoerytrocyanins aus Fischerella PCC 7603Ludwig-Maximilians-Universität27Google Scholar
Storf, M.Parbel, A.Meyer, M.Strohmann, B.Scheer, H.Deng, M.Zheng, M.Zhou, M.Zhao, K. 2001 Chromophore attachment to biliproteins: Specificity of PecE/PecF, a lyase/isomerase for the photoactive 31-Cys-α84-phycoviolobilin chromophore of phycoerythrocyaninBiochemistry 40 12444CrossRefGoogle Scholar
Swanson, R. V.Glazer, A. N. 1990 Phycobiliprotein methylation: Effect of the γ--methylasparagine residue on energy transfer in phycocyanin and the phycobilisomeJ. Mol. Biol 214 787CrossRefGoogle Scholar
Tandeau de Marsac, N. 1977 Occurence and nature of chromatic adaptation in cyanobacteriaJ. Bacteriol 130 82Google Scholar
Tandeau de Marsac, N.Houmard, M.Houmard, J. 1993 Adaption of cyanobacteria to environmental stimuli: new steps towards molecular mechanismFEMS Microbiol. Rev 104 119CrossRefGoogle Scholar
Thomas, B. A.Bricker, T. M.Klotz, A. V. 1993 Post-translational methylation of phycobilisomes and oxygen evolution efficiency in cyanobacteriaBiochim. Biophys. Acta 1143 104CrossRefGoogle Scholar
Ting, C. S.Rocap, G.King, J.Chisholm, S. W. 2001 Phycobiliprotein genes of the marine photosynthetic prokaryote : evidence for rapid evolution of genetic heterogeneityMicrobiology 147 3171CrossRefGoogle ScholarPubMed
Tooley, A. J.Glazer, A. N. 2002 Biosynthesis of the cyanobacterial light-harvesting polypeptide phycoerythrocyanin holo-α subunit in a heterologous hostJ. Bacteriol 184 4666CrossRefGoogle Scholar
Tu, J. -M.Kupka, M.Böhm, S.Plöscher, M.Eichacker, L.Zhao, K. -H.Scheer, H. 2008 Intermediate binding of phycocyanobilin to the lyase, CpeS1, and transfer to apoproteinPhotosynth. Res 95 163CrossRefGoogle ScholarPubMed
Weij-De Wit, C. D.Doust, A. B.van Stokkum, I. H.Dekker, J. P.Wilk, K. E.Curmi, P. M.Scholes, G. D.van Grondelle, R. 2006 How energy funnels from the phycoerythrin antenna complex to photosystem I and photosystem II in cryptophyte CS24 cellsJ. Phys. Chem. B 110 25066CrossRefGoogle ScholarPubMed
Weij-De Wit, C. D.Doust, A. B.van Stokkum, I. H.Dekker, J. P.Wilk, K. E.Curmi, P. M.van Grondelle, R. 2008 Phycocyanin sensitizes both photosystem I and photosystem II in cryptophyte CCMP270 cellsBiophys. J 94 2423CrossRefGoogle ScholarPubMed
van Thor, J. J.Gruters, O. W. M.Matthijs, H. C. P.Hellingwerf, K. J. 1999 Localization and function of ferredoxin:NADP+ reductase, bound to the phycobilisomes of Embo J 18 4128CrossRefGoogle Scholar
Wagner, J. R.Brunzelle, J. S.Forest, K. T.Vierstra, R. D. 2005 A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochromeNature 438 325CrossRefGoogle ScholarPubMed
Wagner, J. R.Zhang, J.Brunzelle, J. S.Vierstra, R. D.Forest, K. T. 2007 High resolution structure of bacteriophytochrome yields new insights into phytochrome architecture and evolutionJ. Biol. Chem 282 12298CrossRefGoogle ScholarPubMed
Wang, X. Q.Li, L. N.Chang, W. R.Zhang, J. P.Gui, L. L.Guo, B. J.Liang, D. C. 2001 Structure of C-phycocyanin from at 2.2 Å resolution: a novel monoclinic crystal form for phycobiliproteins in phycobilisomesActa Cryst. D Biol. Cryst 57 784CrossRefGoogle ScholarPubMed
Wedemayer, G. J.Wemmer, D. E.Glazer, A. N. 1991 Phycobilins of cryptophycean algaeJ. Biol. Chem 266 4731Google ScholarPubMed
Wedemayer, G. J.Kidd, D. G.Glazer, A. N. 1996 Cryptomonad biliproteins: Bilin types and locationsPhotosynth. Res 48 163CrossRefGoogle ScholarPubMed
Wehrmeyer, W. 1983 Phycobiliproteins and phycobiliprotein organization in the photosynthetic apparatus of cyanobacteria, red algae, and cryptophytesProteins and Nucleic Acids in Plant SystemsJense, U.Fairbrother, D. E.BerlinSpringer-Verlag143CrossRefGoogle Scholar
Wehrmeyer, W. 1988 Structure of Cryptophyte photosynthetic membranesPhotosynthetic Light-Harvesting Systems, Organization and FunctionScheer, H.Schneider, S.BerlinDe Gruyter35Google Scholar
Wiegand, G.Parbel, A.Seifert, M. H.Holak, T. A.Reuter, W. 2002 Purification, crystallization, NMR spectroscopy and biochemical analyses of α-phycoerythrocyanin peptidesEur. J. Biochem 269 5046CrossRefGoogle ScholarPubMed
Wilson, A.Punginelli, C.Gall, A.Bonetti, C.Alexandre, M.Routaboul, J. -M.Kerfeld, C. A.van Grondelle, R.Robert, B.Kennis, J. T. M.Kirilovsky, D. 2008 A photoactive carotenoid protein acting as light intensity sensorProc. Natl. Acad. Sci. USA 105 12075CrossRefGoogle ScholarPubMed
Wu, S. -H.Lagarias, J. C. 2000 Defining the bilin lyase domain: lessons from the extended phytochrome superfamilyBiochemistry 39 13487CrossRefGoogle ScholarPubMed
Yang, X.Stojkovic, E. A.Kuk, J.Moffat, K. 2007 Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversionProc. Natl. Acad. Sci. USA 104 12571CrossRefGoogle ScholarPubMed
Yang, X.Kuk, J.Moffat, K. 2008 Crystal structure of bacteriophytochrome: photoconversion and signal transductionProc. Natl. Acad. Sci. USA 105 14715CrossRefGoogle ScholarPubMed
Zhao, K. H.Haessner, R.Cmiel, E.Scheer, H. 1995 Type I reversible photochemistry of phycoerythrocyanin involves -isomerization of α-84 phycoviolobilin chromophoreBiochim. Biophys. Acta 1228 235CrossRefGoogle Scholar
Zhao, K. -H.Wu, D.Wang, L.Zhou, M.Storf, M.Bubenzer, C.Strohmann, B.Scheer, H. 2002 Characterization of phycoviolobilin phycoerythrocyanin- α84-cystein-lyase-(isomerizing) from Eur. J. Biochem 269 4542CrossRefGoogle Scholar
Zhao, K. -H.Ran, Y.Li, M.Sun, Y. -N.Zhou, M.Storf, M.Kupka, M.Böhm, S.Bubenzer, C.Scheer, H. 2004 Photochromic biliproteins from the cyanobacterium sp. PCC 7120: lyase activities, chromophore exchange and photochromism in phytochrome and phycoerythrocyaninBiochemistry 43 11576CrossRefGoogle Scholar
Zhao, K. H.Su, P.Böhm, S.Song, B.Zhou, M.Bubenzer, C.Scheer, H. 2005 Reconstitution of phycobilisome core-membrane linker, Lcm, by autocatalytic chromophore binding to ApcEBiochim. Biophys. Acta 1706 81CrossRefGoogle ScholarPubMed
Zhao, K. H.Su, P.Li, J. A.Tu, J. M.Zhou, M.Bubenzer, C.Scheer, H. 2006 Chromophore attachment to phycobiliprotein β-subunits: phycocyanobilin:cysteine-β84 phycobiliprotein lyase activity of CpeS-like protein from sp. PCC 7120J. Biol. Chem 281 8573CrossRefGoogle Scholar
Zhao, K. -H.Wu, D.Zhang, L.Zhou, M.Böhm, S.Bubenzer, C.Scheer, H. 2006 Chromophore attachment in phycocyanin: functional amino acids of phycocyanobilin – α-phycocyanin lyase and evidence for chromophore bindingFEBS J 273 1262CrossRefGoogle ScholarPubMed
Zhao, K. -H.Su, P.Tu, J. M.Wang, X.Liu, H.Plöscher, M.Eichacker, L.Yang, B.Zhou, M.Scheer, H. 2007 Phycobilin:cystein-84 biliprotein lyase, a near-universal lyase for cysteine-84-binding sites in cyanobacterial phycobiliproteinsProc. Natl. Acad. Sci. USA 104 14300CrossRefGoogle ScholarPubMed
Zhao, K. -H.Zhang, J.Tu, J. M.Böhm, S.Plöscher, M.Eichacker, L.Bubenzer, C.Scheer, H.Wang, X.Zhou, M. 2007 Lyase activities of CpcS and CpcT-like proteins from sp. PCC7120, and sequential reconstitution of binding sites of phycoerythrocyanin and phycocyanin β-subunitsJ. Biol. Chem 282 34093CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×