Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-23T00:53:52.505Z Has data issue: false hasContentIssue false

18 - Chemotaxis and Detection

from Part II - Single Bacteria

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces chemotactic phenomena and some mathematical models, pattern formation, quorum sensing and magnetotaxis.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 190 - 202
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

Berg, H. C.; Purcell, E. M., Physics of chemoreception. Biophysical Journal 1977, 20 (2), 193219.CrossRefGoogle ScholarPubMed
Endres, R. G., Physical Principles in Sensing and Signalling: With an Introduction to Modelling in Biology. Oxford University Press: 2013.Google Scholar
Purcell, E. M., Life at low Reynolds number. American Journal of Physics 1977, 45 (3), 311.CrossRefGoogle Scholar

References

Purcell, E. M., Life at low Reynolds number. American Journal of Physics 1977, 45 (3), 311.CrossRefGoogle Scholar
Berg, H. C.; Purcell, E. M., Physics of chemoreception. Biophysical Journal 1977, 20 (2), 193219.CrossRefGoogle ScholarPubMed
Kortmann, J.; Narberhaus, F., Bacterial RNA thermometers: Molecular zippers and switches. Nature Reviews Microbiology 2012, 10 (4), 255265.CrossRefGoogle ScholarPubMed
Parkinson, J. S., Signal transduction schemes of bacteria. Cell 1993, 73 (3), 857871.CrossRefGoogle ScholarPubMed
Adler, J., Chemoreceptors in bacteria. Science 1969, 166 (3913), 15881597.CrossRefGoogle ScholarPubMed
Adler, J., Chemotaxis in bacteria. Science 1966, 153 (3737), 708716.CrossRefGoogle ScholarPubMed
Endres, R. G., Physical Principles in Sensing and Signalling. Oxford University Press: 2013.Google Scholar
Colin, R.; Drescher, K.; Sourjik, V., Chemotactic behaviour of E. coli at high cell density. Nature Communications 2019, 10 (1), 5329.CrossRefGoogle ScholarPubMed
Dufrene, Y. F.; Dersat, A., Mechanomicrobiology: How bacteria sense and respond to forces. Nature Reviews Microbiology 2020, 18 (4), 227240.CrossRefGoogle ScholarPubMed
Hu, B.; Chen, W.; Rappel, W. J.; Levine, H., Physical limits on cellular sensing of spatial gradients. Physical Review Letters 2010, 105 (4), 048104.CrossRefGoogle ScholarPubMed
Thar, R.; Kuhl, M., Bacteria are not too small for spatial sensing of chemical gradients: An experimental evidence. Proceedings of the National Academy of Sciences of the United States of America 2003, 100 (10), 57485753.CrossRefGoogle Scholar
Dusenberg, P. B., Living at Microscale. Harvard: 2009.Google Scholar
Brumley, D. R.; Carrara, F.; Hein, A. M.; Yawata, Y.; Levin, S. A.; Stocker, R., Bacteria push the limits of chemotactic precision to navigate dynamic chemical gradients. Proceedings of the National Academy of Sciences of the United States of America 2019, 116 (22), 1079210797.CrossRefGoogle ScholarPubMed
Alirezaeizanjani, Z.; Grossmann, R.; Pfeifer, V.; Hintsche, M., Chemotaxis strategies of bacteria with multiple run modes. Science Advances 2020, 6 (22), eaaz6153.CrossRefGoogle ScholarPubMed
Delprato, A. M.; Samadani, A.; Kudrolli, A.; Tsimring, L. S., Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Physical Review Letters 2001, 87 (15), 158102.CrossRefGoogle ScholarPubMed
Blee, J. A.; Roberts, I. S.; Waigh, T. A., Membrane potentials, oxidative stress and the dispersal response of bacterial biofilms to 405 nm light. Physical Biology 2020, 17 (3), 036001.CrossRefGoogle ScholarPubMed
Akabuogu, E. U.; Martorelli, V.; Krasovec, R.; Roberts, I. S.; Waigh, T. A., Emergence of ion-channel mediated electrical oscillations in E. coli biofilms. eLife 2023, to appear.Google Scholar
Berg, H. C.; Turner, L., Chemotaxis of bacteria in glass capillary arrays. Biophysical Journal 1990, 58 (4), 919930.CrossRefGoogle ScholarPubMed
Krulwich, T. A.; Sachs, G.; Padan, E., Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology 2011, 9 (5), 330343.CrossRefGoogle ScholarPubMed
MacNab, R. M.; Castle, A. M., A variable stoichiometry model for pH homeostasis in bacteria. Biophysical Journal 1987, 52 (4), 637647.CrossRefGoogle ScholarPubMed
Voigt, E. O., A First Course in Systems Biology, 2nd ed. Garland Science: 2017.Google Scholar
Rust, M. J.; Markson, J. S.; Lane, W. S.; Fisher, D. S.; O’Shea, E. K., Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science 2007, 318 (5851), 809812.CrossRefGoogle ScholarPubMed
Berg, H. C., Random Walks in Biology. Princeton University Press: 1993.Google Scholar
Cluzel, P.; Surette, M.; Leibler, S., An ultrasensitive bacterial motor revealed by monitoring signaling proteins in single cells. Science 2000, 287 (5458), 16521655.CrossRefGoogle ScholarPubMed
Salek, M. M.; Carrara, F.; Fernandez, V.; Guasto, J. S.; Stocker, R., Bacterial chemotaxis in a microfluidic T-maze reveals strong phenotypic heterogeneity in chemotactic sensitivity. Nature Communications 2019, 10 (1), 1877.CrossRefGoogle Scholar
Schuergers, N.; et al., Cyanobacteria use micro-optics to sense light direction. eLife 2016, 5, e12620.CrossRefGoogle ScholarPubMed
Kalinin, Y. V.; Jiang, L.; Tu, Y.; Wu, M., Logarithmic sensing in Escherichia coli bacterial chemotaxis. Biophysical Journal 2009, 96 (6), 24392448.CrossRefGoogle ScholarPubMed
Salman, H.; Zilman, A.; Loverdo, C.; Jefroy, M.; Libchaber, A., Solitary modes of bacterial culture in a temperature gradient. Physical Review Letters 2006, 97 (11), 118101.CrossRefGoogle Scholar
Gelimson, A.; Zhao, K.; Lee, C. K.; Kranz, W. T.; Wong, G. C. L.; Golestanian, R., Multicellular self-organization of P. aeruginosa due to interactions with secreted trails. Physical Review Letters 2016, 117 (17), 178102.CrossRefGoogle ScholarPubMed
Fu, X.; Tang, L. H.; Liu, C.; Huang, J. D.; Hwa, T.; Lenz, P., Stripe formation in bacterial systems with density-suppressed motility. Physical Review Letters 2012, 108 (19), 198102.CrossRefGoogle ScholarPubMed
Woodward, D. E.; Tyson, R.; Myerscough, M. R.; Murray, J. D.; Budrene, E. O.; Berg, H. C., Spatio-temporal patterns generated by Salmonella typhimurium. Biophysical Journal 1995, 68 (5), 21812189.CrossRefGoogle ScholarPubMed
Brenner, M. P.; Levitov, L. S.; Budrene, E. O., Physical mechanisms for chemotactic pattern formation by bacteria. Biophysical Journal 1998, 74 (4), 16771693.CrossRefGoogle ScholarPubMed
Lambert, G.; Bergman, A.; Zhang, Q.; Bortz, D.; Austin, R., Physics of biofilms: The initial stages of biofilm formation and dynamics. New Journal of Physics 2014, 16 (4), 045005.CrossRefGoogle Scholar
Farrell, F.; Hallatschek, O.; Marenduzzo, D.; Waclaw, B., Mechanically driven growth of quasi-two-dimensional microbial colonies. Physical Review Letters 2013, 111 (16), 168101.CrossRefGoogle ScholarPubMed
Douarche, C.; Buguin, A.; Salman, H.; Libchaber, A., E. coli and oxygen: A motility transition. Physical Review Letters 2009, 102 (19), 198101.CrossRefGoogle ScholarPubMed
Ahmed, T.; Stocker, R., Experimental verification of the behavioral foundation of bacterial transport parameters using microfluidics. Biophysical Journal 2008, 95 (9), 44814493.CrossRefGoogle ScholarPubMed
Zhu, X.; et al., Frequency-dependent Escherichia coli chemotaxis behaviors. Physical Review Letters 2012, 108 (12), 128101.CrossRefGoogle Scholar
Alon, U., An Introduction to Systems Biology: Design Principles of Biological Circuits, 2nd ed. CRC Press: 2020.Google Scholar
Ingalls, B. P., Mathematical Modeling in Systems Biology: An Introduction. MIT Press: 2013.Google Scholar
Blakemore, R., Magnetotactic bacteria. Science 1975, 190 (4212), 377379.CrossRefGoogle ScholarPubMed
Komeili, A.; Li, Z.; Newman, D. K.; Jensen, G. J., Magnetosomes are cell membrane invaginations organized by the actin-like protein MamK. Science 2006, 311 (5758), 242245.CrossRefGoogle ScholarPubMed
Klumpp, S.; Lefevre, C. T.; Bennet, M.; Faivre, D., Swimming with magnets: From biological organisms to synthetic devices. Physics Reports 2019, 789 (2), 154.CrossRefGoogle Scholar
Frankel, R. B.; Blakemore, R. P.; Wolfe, R. S., Magnetite in freshwater magnetotactic bacteria. Science 1979, 203 (4387), 13551356.CrossRefGoogle ScholarPubMed
Loehr, J.; Pfeiffer, D.; Schuler, D.; Fischer, T. M., Magnetic guidance of the magnetotactic bacterium Magnetospirillum gryphiswaldense. Soft Matter 2016, 12 (15), 36313635.CrossRefGoogle ScholarPubMed
Lefevre, C. T.; et al., Diversity of magneto-aerotactic behaviors and oxygen sensing mechanisms in cultured magnetotactic bacteria. Biophysical Journal 2014, 107 (2), 527538.CrossRefGoogle ScholarPubMed
Frankel, R. B.; Bazylinski, D. A.; Johnston, M. S.; Taylor, B. L., Magneto-aerotaxis in marine coccoid bacteria. Biophysical Journal 1997, 73 (2), 9941000.CrossRefGoogle ScholarPubMed
Erglis, K.; Wen, Q.; Ose, V.; Zeltins, A.; Sharipo, A.; Janmey, P. A.; Cebers, A., Dynamics of magnetotactic bacteria in a rotating magnetic field. Biophysical Journal 2007, 93 (4), 14021412.CrossRefGoogle Scholar
Rosenblatt, C.; Torres de Araujo, F. F.; Frankel, R. B., Birefringence determination of magnetic moments of magnetotactic bacteria. Biophysical Journal 1982, 40 (1), 8385.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×