Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-19T00:03:13.935Z Has data issue: false hasContentIssue false

24 - Action of Antibiotics and Antiseptics, a Physical Perspective

from Part III - Interacting Bacteria and Biofilms

Published online by Cambridge University Press:  12 December 2024

Thomas Andrew Waigh
Affiliation:
University of Manchester
Get access

Summary

Introduces the physical action of antibiotics and antiseptics including penetration through biofilms, persister cells, surface activity, physical sterilization and antibiofilm molecules.

Type
Chapter
Information
The Physics of Bacteria
From Cells to Biofilms
, pp. 278 - 300
Publisher: Cambridge University Press
Print publication year: 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggested Reading

McDonnell, G. E., Antisepsis, Disinfection and Sterilization: Types, Action and Resistance. ASM: 2017. Currently the definitive account of the action of antiseptics, including detergents, from an applied microbiology perspective.CrossRefGoogle Scholar
Walsh, C., Wencewicz, T., Antibiotics: Challenges, Mechanisms and Opportunities. ASM: 2016. Detailed approach to current developments in antibiotic chemistry.CrossRefGoogle Scholar

References

Walsh, C. T.; Wencewicz, T., Antibiotics: Challenges, Mechanisms, Opportunities. ASM Books: 2016.CrossRefGoogle Scholar
McDonnell, G. E., Antisepsis, Disinfection and Sterilization: Types, Action and Resistance, 2nd ed. ASM Press: 2017.CrossRefGoogle Scholar
Gong, H.; et al., Hydrophobic control of the bioactivity and cytotoxicity of de novo designed antimicrobial peptides. ACS Applied Materials and Interfaces 2019, 11 (38), 3460934620.CrossRefGoogle Scholar
Gong, H.; et al., Aggregated amphiphilic antimicrobial peptides embedded in bacterial membranes. ACS Applied Materials and Interfaces 2020, 12 (40), 4442044432.CrossRefGoogle ScholarPubMed
Fischbach, M. A.; Walsh, C. T., Antibiotics for emerging pathogens. Science 2009, 325 (5944), 10891093.CrossRefGoogle ScholarPubMed
D’Costa, V.; McGrann, K. M.; Hughes, D. W.; Wright, G. D., Sampling the antibiotic resistome. Science 2006, 311 (5759), 374377.CrossRefGoogle ScholarPubMed
Taubes, G., The bacteria fight back. Science 2008, 321 (5887), 356361.CrossRefGoogle ScholarPubMed
van Vranken, D.; Weiss, G. A., Introduction to Bioorganic Chemistry and Chemical Biology. Garland: 2012.Google Scholar
Costerton, J. W.; Lewandowki, Z.; Caldwell, D. E.; Korber, D. R.; Lappin-Scott, H. M., Microbial biofilms. Annual Review of Microbiology 1995, 49, 711745.CrossRefGoogle ScholarPubMed
Zhang, X. L.; Hansing, J.; Netz, R. R.; DeRouchey, J. E., Particle transport through hydrogels is charge asymmetric. Biophysical Journal 2015, 108 (3), 530539.CrossRefGoogle ScholarPubMed
White, O.; et al., Genome sequence of the radioresistant bacterium Deinococcus radiodurans R1. Science 1999, 284 (5444), 15711577.CrossRefGoogle Scholar
Stewart, P. S., Theoretical aspects of antibiotic diffusion into microbial biofilm. Antimicrobial Agents and Chemotherapy 1996, 40 (11), 25172521.CrossRefGoogle Scholar
Stewart, P. S., Diffusion in biofilms. Journal of Bacteriology 2003, 185 (5), 14851491.CrossRefGoogle ScholarPubMed
Metzler, R.; Klafter, J., The restaurant at the end of the random walk. Journal of Physics A: General Physics 2004, 37 (31), R161–R208.CrossRefGoogle Scholar
15.Capuccino, J. G.; Welsh, C., Microbiology: A Laboratory Manual. Pearson: 2018.Google Scholar
Mah, T. F.; O’Toole, G. A., Mechanisms of biofilm resistance to antimicrobial agents. Trends in Microbiology 2001, 9 (1), 3439.CrossRefGoogle ScholarPubMed
Bansil, R.; Turner, B. S., Mucin structure, aggregation, physiological functions and biomedical applications. Current Opinion in Colloid and Interface Science 2006, 11 (2–3), 164170.CrossRefGoogle Scholar
Kosztolowicz, T.; Metzler, R.; Wasik, S.; Arabski, M., Modelling experimentally measured of ciprofloxacin antibiotic diffusion in Pseudomonas aeruginosa biofilm formed in artificial sputum medium. PLOS One 2020, 15 (12), e0243003.CrossRefGoogle ScholarPubMed
Kosztolowicz, T.; Metzler, R., Diffusion of antibiotics through a biofilm in the presence of diffusion and absorption barriers. Physical Review E 2020, 102 (3-1), 032408.CrossRefGoogle ScholarPubMed
Bonev, B.; Hooper, J.; Parisot, J., Principles of assessing bacterial susceptibility to antibiotics using the agar diffusion method. Journal of Antimicrobial Chemotherapy 2008, 61 (6), 12951301.CrossRefGoogle ScholarPubMed
Walsh, C., Molecular mechanisms that confer antibacterial drug resistance. Nature 2000, 406 (6797), 775781.CrossRefGoogle ScholarPubMed
Gullbert, E.; Cao, S.; Berg, O. G.; Ilback, C.; Sandegren, L.; Hughes, D.; Andersson, D. I., Selection of resistant bacteria at very low antibiotic concentrations. PLOS Pathogens 2011, 7 (7), e1002158.Google Scholar
Knoppel, A.; Nassall, J.; Andersson, D. I., Evolution of antibiotic resistance without antibiotic exposure. Antimicrobial Agents and Chemotherapy 2017, 61 (11), e01495.CrossRefGoogle ScholarPubMed
WaltersIII, C.; Roe, F.; Bugnicourt, A.; Franklin, M. J.; Stewart, P. S., Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrobial Agents and Chemotherapy 2003, 47 (1), 317323.CrossRefGoogle ScholarPubMed
Nguyen, D.; et al., Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 2011, 334 (6058), 982986.CrossRefGoogle ScholarPubMed
Hentzer, M.; Teitzel, G. M.; Balzer, G. I.; Heydorn, A.; Molin, S.; Givskov, M.; Parsek, M. R., Alginate overproduction affects Pseudomonas aeruginosa biofilm structure and function. Journal of Bacteriology 2001, 183 (18), 53955401.CrossRefGoogle ScholarPubMed
Andel, J. N.; Franklin, M. J.; Stewart, P. S., Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrobial Agents and Chemotherapy 2000, 44 (7), 18181824.CrossRefGoogle Scholar
Rani, S. A.; Pitts, B.; Stewart, P. S., Rapid diffusion of fluorescent tracers into Staphylococcus epidermis biofilms visualized by time lapse microscopy. Antimicrobial Agents and Chemotherapy 2005, 49 (2), 728732.CrossRefGoogle Scholar
Grobas, I.; Polin, M.; Asally, M., Swarming bacteria undergo localized dynamic phase transitions to form stress induced biofilms. eLife 2021, 10, e62632.CrossRefGoogle ScholarPubMed
Seifert, A.; Kashi, Y.; Livney, Y. D., Delivery to gut microbiota: A rapidly proliferating research field. Advances in Colloid and Interface Science 2019, 274, 102038.CrossRefGoogle ScholarPubMed
Fort, J.; Mendez, V., Time-delayed spread of viruses in growing plaques. Physical Review Letters 2002, 89 (17), 178101.CrossRefGoogle ScholarPubMed
Vijay, U.; Gupta, S.; Mathur, P.; Suravajhala, P.; Bhatnagar, P., Microbial mutagenicity assay: Ames test. Bio Protocols 2018, 8 (6), e2763.Google ScholarPubMed
Lewis, K., Persister cells, dormancy and infectious disease. Nature Reviews Microbiology 2007, 5 (1), 4856.CrossRefGoogle ScholarPubMed
Lewis, K., Multidrug tolerance of biofilm and persister cells. In Current Topics in Microbiology and Immunology, Romeo, T., Ed.; Springer: 2008; Vol. 322; pp. 107131.Google Scholar
Windels, E. M.; Michiels, J. E.; Fauvart, M.; Wenseleers, T.; Van den Bergh, B.; Michiels, J., Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. The ISME Journal 2019, 13 (5), 12391251.CrossRefGoogle ScholarPubMed
Orman, M. A.; Brynildsen, M. P., Inhibition of stationary phase respiration impairs persister formation in E. coli. Nature Communications 2015, 6, 7983.CrossRefGoogle Scholar
Zur Wiesch, P. A.; et al., Classic reaction kinetics can explain complex patterns of antibiotic action. Science Translational Medicine 2015, 7 (287), 287ra73.Google Scholar
Clarelli, F.; et al., Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLOS Computational Biology 2020, 16 (8), e1008106.CrossRefGoogle ScholarPubMed
Balaban, N. Q.; et al., Definitions and guidelines for research on antibiotic persistence. Nature Reviews Microbiology 2019, 17 (7), 441448.CrossRefGoogle ScholarPubMed
Denega, I.; D’Enfert, C.; Backellier-Bassi, S., Candida albicans biofilms are generally devoid of persister cells. Antimicrobial Agents and Chemotherapy 2019, 63 (5), e01979.CrossRefGoogle ScholarPubMed
Drescher, K.; Dunkel, J.; Cisneros, L. H.; Ganguly, S.; Goldstein, R. E., Fluid dynamics and noise in bacterial cell-cell and cell-surface scattering. PNAS 2011, 108 (27), 1094010945.CrossRefGoogle ScholarPubMed
Hwang, G.; et al., Catalytic antimicrobial robots for biofilm eradication. Science Robotics 2019, 4 (29), eaaw2388.CrossRefGoogle ScholarPubMed
Balaban, N. Q.; Merrin, J.; Chait, R.; Kowalik, L.; Leibler, S., Bacterial persistence as a phenotypic switch. Science 2004, 305 (5690), 16221625.CrossRefGoogle ScholarPubMed
Zasloff, M., Antimicrobial peptides of multicellular organisms. Nature 2002, 415 (6870), 389395.CrossRefGoogle ScholarPubMed
Fernandez-Lopez, S.; et al., Antibacterial agents based on the cyclic D,L alpha peptide architecture. Nature 2001, 412 (6845), 452455.CrossRefGoogle ScholarPubMed
Hancock, R. E.; Scott, M. G., The role of antimicrobial peptides in animal defenses. PNAS 2000, 97 (16), 88568861.CrossRefGoogle ScholarPubMed
Lazzaro, B. P.; Zasloff, M.; Rolff, J., Antimicrobial peptides: Application informed by evolution. Science 2020, 368 (6490), 487494.CrossRefGoogle ScholarPubMed
Bader, M. W.; et al., Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 2005, 122 (3), 461472.CrossRefGoogle ScholarPubMed
Guo, K.; Lim, K. B.; Gunn, J. S.; Bainbridge, B.; Darveau, R. P.; Hackett, M.; Miller, S. L., Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ. Science 1997, 276 (5310), 250253.CrossRefGoogle ScholarPubMed
di Somma, A.; Moretta, A.; Cane, C.; Cirillo, A.; Duilio, A., Antimicrobial and antibiofilm peptides. Biomolecules 2020, 10 (4), 652.CrossRefGoogle ScholarPubMed
Antimicrobial peptide database. http://aps.unmc.edu/AP.Google Scholar
Groot, R. D.; Rabone, K. L., Mesoscopic simulation of cell membrane damage, morphology change and rupture by nonionic surfactants. Biophysical Journal 2001, 81 (2), 725736.CrossRefGoogle ScholarPubMed
Hwang, H.; Paracini, N.; Parks, J. M.; Lakey, J. H.; Gumbart, J. C., Distribution of mechanical stress in Escherichia coli cell envelope. Biochimica et Biophysica Acta 2018, 1860 (12), 25662575.CrossRefGoogle ScholarPubMed
Boal, D., Mechanics of the Cell. CUP: 2012.CrossRefGoogle Scholar
Parkin, J.; Chavert, M.; Khalil, S., Molecular simulations of Gram-negative bacterial membranes: A vignette of some recent successes. Biophysical Journal 2015, 109 (3), 461468.CrossRefGoogle ScholarPubMed
Arnoldi, M.; Fitz, M.; Bauerlein, E.; Fritz, M.; Radmacher, M.; Sackmann, E.; Boulbitch, A., Bacterial turgor pressure can be measured by atomic force microscopy. Physical Review E 2000, 62 (1 Pt B), 10341044.CrossRefGoogle ScholarPubMed
Mularski, A.; Wilksch, J. J.; Wang, H.; Hossain, M. A.; Wade, J. D.; Separovic, F.; Strugnell, R. A.; Gee, M. L., Atomic force microscopy reveals the mechanobiology of lytic peptide action on bacteria. Langmuir 2015, 31 (22), 61646171.CrossRefGoogle ScholarPubMed
Huffner, S. M.; Malmsten, M., Influence of self-assembly on the performance of antimicrobial peptides. Current Opinion in Colloid and Interface Science 2018, 38, 5679.Google Scholar
Ongena, M.; Jacques, P., Bacillus lipopeptides: Versatile weapons for plant disease biocontrol. Trends in Microbiology 2008, 16 (3), 115125.CrossRefGoogle ScholarPubMed
Huang, K. C.; Mukhopadhyay, R.; Wen, B.; Gitai, Z.; Wingreen, N. S., Cell shape and cell-wall organization in gram-negative bacteria. PNAS 2008, 105 (49), 1928219287.CrossRefGoogle ScholarPubMed
Wu, F.; Tau, C., Dead bacterial adsorption of antimicrobial peptides underlies collective tolerance. Journal of Royal Society Interface 2019, 16, 20180701.CrossRefGoogle Scholar
Rabea, E. I.; Badawy, E. T.; Stevens, C. V.; Smagghe, G.; Steurbaut, W., Chitosan as antimicrobial agent: Applications and mode of action. Biomacromolecules 4 (6), 14571465.CrossRefGoogle Scholar
Tiller, J. C.; Liao, C. J.; Lewis, K.; Klibanov, A. M., Designing surfaces that kill bacteria on contact. PNAS 2001, 98 (11), 59815985.CrossRefGoogle ScholarPubMed
Delprato, A. M.; Samadani, A.; Kudrolli, A.; Tsimring, L. S., Swarming ring patterns in bacterial colonies exposed to ultraviolet radiation. Physical Review Letters 2001, 87 (15), 158102.CrossRefGoogle ScholarPubMed
Nelson, K. L.; et al., Sunlight-mediated inactivation of health-relevant microorganisms in water: A review of mechanisms and modelling approaches. Environmental Science Process Impacts 2018, 20 (8), 10891122.CrossRefGoogle Scholar
Yin, W.; Wang, Y.; Liu, L.; He, J., Biofilms: The microbial ‘protective clothing’ in extreme environments. International Journal of Molecular Sciences 2019, 20 (14), 3423.CrossRefGoogle ScholarPubMed
Zharov, V. P.; Mercer, K. E.; Galitovskaya, E. N.; Smeltzer, M. S., Photothermal nanotherapeutics and nanodiagnostics for selective killing of bacteria targeted with gold nanoparticles. Biophysical Journal 2006, 90 (2), 619627.CrossRefGoogle ScholarPubMed
Peyer, K. E.; Zhang, L.; Nelson, B. J., Bioinspired magnetic swimming microrobots for biomedical applications. Nanoscale 2013, 5 (4), 1259.CrossRefGoogle ScholarPubMed
Wang, X.; et al., Microenvironment-responsive magnetic nanocomposites based on silver nanoparticles/gentamicin for enhanced biofilm disruption by magnetic field ACS Applied Materials and Interfaces 2018, 10 (41), 3490534915.CrossRefGoogle ScholarPubMed
Day, A. W.; Kumamoto, C. A., Gut microbiome dysbiosis in alcoholism. Frontier in Cellular Infectious Microbiology 2022, 12, 840164.CrossRefGoogle ScholarPubMed
Silver, S., Bacterial silver resistance: Molecular biology and uses and misuses of silver compounds. FEMS Microbiology Reviews 2003, 27 (2–3), 341353.CrossRefGoogle ScholarPubMed
de Beer, D.; Srinivasan, R.; Stewart, P. S., Direct measurement of chlorine penetration into biofilms during disinfection. Applied and Environmental Microbiology 1994, 60 (12), 43394344.CrossRefGoogle ScholarPubMed
Stewart, E. J.; Satorius, A. E.; Younger, J. G.; Solomon, M. J., Role of environmental and antibiotic stress on Staphylococcus epidermidis biofilm microstructure. Langmuir 2013, 29 (23), 70177024.CrossRefGoogle ScholarPubMed
Hoiby, N.; Bjarnsholt, T.; Givskov, M.; Molin, S.; Ciofu, O., Antibiotic resistance of bacterial biofilms. International Journal of Antimicrobial Agents 2010, 35 (4), 322332.CrossRefGoogle ScholarPubMed
Vaishnava, S.; et al., The antibacterial lectin RegIII-Gamma promotes the spatial segregation of microbiota and host in the intestine. Science 2011, 334 (6053), 255258.CrossRefGoogle Scholar
Singh, P. K.; Parsek, M. R.; Greenberg, E. P.; Welsh, M. J., A component of innate immunity presents bacterial biofilm development. Nature 2002, 417, 552555.CrossRefGoogle Scholar
Kolodkin-Gal, I.; Romero, D.; Cao, S.; Clardy, J.; Kolter, R.; Losick, R., D-Amino acids trigger biofilm disassembly. Science 2010, 328 (5978), 627629.CrossRefGoogle ScholarPubMed
Hentzer, M.; et al., Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO Journal 2003, 22 (15), 38033815.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×