Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-01T06:47:23.341Z Has data issue: false hasContentIssue false

9 - Probe diffusion

Published online by Cambridge University Press:  05 August 2012

George D. J. Phillies
Affiliation:
Worcester Polytechnic Institute, Massachusetts
Get access

Summary

Introduction

This chapter examines the diffusion of mesoscopic rigid probe particles through polymer solutions. These measurements form a valuable complement to studies of polymer self- and tracer diffusion, and to studies of self- and tracer diffusion in colloid suspensions. Any properties that are common to probe diffusion and polymer self-diffusion cannot arise from the flexibility of the polymer probes or from their ability to be interpenetrated by neighboring matrix chains. Any properties that are common to probe diffusion and to colloid diffusion cannot arise from the flexibility of the matrix polymers or from the ability of matrix chains to interpenetrate each other. Conversely, phenomena that require that the probe and matrix macromolecules be able to change shape or to interpenetrate each other will reveal themselves in the differences between probe diffusion, single-chain diffusion, and colloid single-particle diffusion.

In a probe diffusion experiment, one examines the motions of dilute mesoscopic particles dispersed in a polymer solution. In some systems, a single relaxation is found. In others, probe motions involve multiple relaxation processes. Probe diffusion is sensitive to the probe radius R, matrix polymer molecular weight M and concentration c, solution viscosity η, solvent viscosity ηs, and other variables.

The literature examined here includes three major experimental approaches, namely (i) optical probe diffusion studies, largely made with quasi elastic light scattering spectroscopy (QELSS), to observe diffusion of dilute probe particles, (ii) particle tracking studies in which the detailed motions of individual particles are recorded, and (iii) true microrheology measurements of the driven motion of mesoscopic probes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] D. N., Turner and F. R., Hallett. Astudy of the diffusion of compact particles in polymer solutions using quasi-elastic light scattering. Biochimica et Biophysica Acta, 451 (1976), 305–312.Google Scholar
[2] M. J., Saxton and K., Jacobson. Single particle tracking: applications to membrane dynamics. Annu. Rev. Biophys. Biomol. Struct., 26 (1997), 373–399.Google Scholar
[3] D. A., Weitz and D. J., Pine. Diffusing-wave spectroscopy. In Dynamic Light Scattering. Ed. W., Brown, (Oxford, UK: Oxford University Press, 1993) 652–720.Google Scholar
[4] B. J., Berne and R., Pecora. Dynamic Light Scattering, (New York: Wiley, 1976), especially Chapter 5.Google Scholar
[5] J. L., Doob. The Brownian movement and stochastic equations. Annals Math., 43 (1942), 351–369.Google Scholar
[6] G. D. J., Phillies. Interpretation of light scattering spectra in terms of particle displacements. J. Chem. Phys., 122 (2005), 224905 1–8.Google Scholar
[7] A. M., Jamieson, J. G., Southwick, and J., Blackwell. Dynamical behavior of xan-than polysaccharide in solution. J. Polymer Sci.: Polymer Phys. Ed., 20 (1982), 1513–1524.Google Scholar
[8] T.-H., Lin and G. D. J., Phillies. Translational diffusion of a macroparticulate probe species in salt-free poly(acrylic) acid : water. J. Phys. Chem., 86 (1982), 4073–4077.Google Scholar
[9] T.-H., Lin and G. D. J., Phillies. Probe diffusion in poly(acrylic acid) : water. Effect of probe size. Macromolecules, 17 (1984), 1686–1691.Google Scholar
[10] T.-H., Lin and G. D. J., Phillies. Probe diffusion in polyacrylic acid : water – effect of polymer molecular weight. J. Coll. Interf. Sci., 100 (1984), 82–95.Google Scholar
[11] T.-H., Lin. Diffusion of TiO2 particles through a poly(ethylene oxide) melt. Makromol. Chem., 187 (1986), 1189–1196.Google Scholar
[12] G. D. J., Phillies, J., Gong, L., Li, et al.Macroparticle diffusion in dextran solutions. J. Phys. Chem., 93 (1989), 6219–6223.Google Scholar
[13] R., Furukawa, J. L., Arauz-Lara, and B. R., Ware. Self-diffusion and probe diffusion in dilute and semidilute solutions of dextran. Macromolecules, 24 (1991), 599–605.Google Scholar
[14] O.A., Nehme, P., Johnson, and A. M., Donald. Probe diffusion in poly-l-lysine solution. Macromolecules, 22 (1989), 4326–4333.Google Scholar
[15] W., Brown and R., Rymden. Interaction of carboxymethylcellulose with latex spheres studied by dynamic light scattering. Macromolecules, 20 (1987), 2867–2873.Google Scholar
[16] W., Brown and R., Rymden. Comparison of the translational diffusion of large spheres and high molecular weight coils in polymer solutions. Macromolecules, 21 (1988), 840–846.Google Scholar
[17] S. C., Smedt, A., Lauwers, J., Demeester, et al.Structural information on hyaluronic acid solutions as studied by probe diffusion experiments. Macromolecules, 27 (1994), 141–146.Google Scholar
[18] S. C., Smedt, P., Dekeyser, V., Ribitsch, A., Lauwers, and J., Demeester. Viscoelastic and transient network properties of hyaluronic acid as a function of the concentration. Biorheology, 30 (1994), 31–42.Google Scholar
[19] C. N., Onyenemezu, D., Gold, M., Roman, and W. G., Miller. Diffusion of polystyrene latex spheres in linear polystyrene nonaqueous solutions. Macromolecules, 26 (1993), 3833–3837.Google Scholar
[20] P., Zhou and W., Brown. Translational diffusion of large silica spheres in semidilute polymer solutions. Macromolecules, 22 (1989), 890–896.Google Scholar
[21] X., Cao, R., Bansil, D., Gantz, et al.Diffusion behavior of lipid vesicles in entangled polymer solutions. Biophys. J., 73 (1997), 1932–1939.Google Scholar
[22] Z., Bu and P. S., Russo. Diffusion of dextran in aqueous hydroxypropylcellulose. Macromolecules, 27 (1994), 1187–1194.Google Scholar
[23] D., Langevin and F., Rondelez. Sedimentation of large colloidal particles through semidilute polymer solutions. Polymer, 19 (1978), 875–882.Google Scholar
[24] Y., Cheng, R. K., Prud'homme, and J. L., Thomas. Diffusion of mesoscopic probes in aqueous polymer solutions measured by fluorescence recovery after photobleaching. Macromolecules, 35 (2002), 8111–8121.Google Scholar
[25] N. A., Busch, T., Kim, and V. A., Bloomfield. Tracer diffusion of proteins in DNA solutions. 2. Green fluorescent protein in crowded DNA solutions. Macromolecules, 33 (2000), 5932–5937.Google Scholar
[26] M. R., Wattenbarger, V. A., Bloomfield, B., Zu, and P. S., Russo. Tracer diffusion of proteins in DNA solutions. Macromolecules, 25 (1992), 5263–5265.Google Scholar
[27] G. D. J., Phillies, Diffusion of bovine serum albumin in a neutral polymer solution. Biopolymers, 24 (1985), 379–386.Google Scholar
[28] K., Ullmann, G. S., Ullmann, and G. D. J., Phillies. Optical probe study of a nonentangling macromolecule solution – bovine serum albumin : water. J. Coll. Interf. Sci., 105 (1985), 315–324.Google Scholar
[29] K. M., Keller, E. R., Canales, and S. I., Yum. Tracer and mutual diffusion coefficients of proteins. J. Phys. Chem., 75 (1971), 379–387.Google Scholar
[30] R. G., Kitchen, B. N., Preston, and J. D., Wells. Diffusion and sedimentation of serum albumin in concentrated solutions. J. Polym. Sci., 55 (1976), 39–49.Google Scholar
[31] G. S., Ullmann and G. D. J., Phillies. Implications of the failure of the Stokes–Einstein relation for measurements with QELSS of polymer adsorption by small particles. Macromolecules, 16 (1983), 1947–1949.Google Scholar
[32] G. S., Ullmann, K., Ullmann, R. M., Lindner, and G. D. J., Phillies. Probe diffusion of polystyrene latex spheres in poly(ethylene oxide) : water. J. Phys. Chem., 89 (1985), 692–700.Google Scholar
[33] J., Won, C., Onyenemezu, W. G., Miller, and T. P., Lodge. Diffusion of spheres in entangled polymer solutions: a return to Stokes–Einstein behavior. Macromolecules, 27 (1994), 7389–7396.Google Scholar
[34] C., Konak, B., Sedlacek, and Z., Tuzar. Diffusion of block copolymer micelles in solutions of a linear polymer. Makromol. Chem., Rapid Commun., 3 (1982), 91–94.Google Scholar
[35] K. E., Bremmell, N., Wissenden, and D. E., Dunstan. Diffusing probe measurements in Newtonian and elastic solutions. Adv. Coll. Interf. Sci., 89–90 (2001), 141–154.Google Scholar
[36] K. E., Bremmell and D. E., Dunstan. Probe diffusion measurements of polystyrene latex particles in polyelectrolyte solutions of varying ionic strength. Macromolecules, 35 (2002), 1994–1999.Google Scholar
[37] D. E., Dunstan and J., Stokes. Diffusing probe measurements in polystyrene latex particles in polyelectrolyte solutions: deviations from Stokes–Einstein behavior. Macromolecules, 33 (2000), 193–198.Google Scholar
[38] I., Delfino, C., Piccolo, and K., Lepore. Experimental study of short- and long-time diffusion regimes of spherical particles in carboxymethylcellulose solutions. Eur. Polym. J., 41 (2005), 1772–1780.Google Scholar
[39] S., Gorti and B. R., Ware. Probe diffusion in an aqueous polyelectrolyte solution. J. Chem. Phys., 83 (1985), 6449–6456.Google Scholar
[40] S. C., Lin, W. I., Lee, and J. M., Schurr. Brownian motion of highly charged poly(l-lysine). Effects of salt and polyion concentration. Biopolymers, 17 (1978), 1041–1064.Google Scholar
[41] G. D. J., Phillies, C., Malone, K., Ullmann, et al.Probe diffusion in solutions of long-chain polyelectrolytes. Macromolecules, 20 (1987), 2280–2289.Google Scholar
[42] G. D. J., Phillies, T., Pirnat, M., Kiss, et al.Probe diffusion in solutions of low-molecular-weight polyelectrolytes. Macromolecules, 22 (1989), 4068–4075.Google Scholar
[43] G. D. J., Phillies, M., Lacroix, and J., Yambert. Probe diffusion in sodium polystyrene sulfonate–water: experimental determination of sphere–chain binary hydrodynamic interactions. J. Phys. Chem., 101 (1997), 5124–5130.Google Scholar
[44] G. D. J., Phillies and P. C., Kirkitelos. Higher-order hydrodynamic interactions in the calculation of polymer transport properties. J. Polymer Sci. B: Polymer Physics, 31 (1993), 1785–1797.Google Scholar
[45] D., Gold, C., Onyenemezu, and W. G., Miller. Effect of solvent quality on the diffusion of polystyrene latex spheres in solutions of poly(methylmethacrylate). Macromolecules, 29 (1996), 5700–5709.Google Scholar
[46] G. D. J., Phillies and D., Clomenil. Probe diffusion in polymer solutions under θ and good conditions. Macromolecules, 26 (1993), 167–170.Google Scholar
[47] A. R., Altenberger, M., Tirrell, and J. S., Dahler. Hydrodynamic screening and particle dynamics in porous media, semidilute polymer solutions and polymer gels. J. Chem. Phys., 84 (1986), 5122–5130.Google Scholar
[48] G. D. J., Phillies. Dynamics of polymers in concentrated solution: the universal scaling equation derived. Macromolecules, 20 (1987), 558–564.Google Scholar
[49] G. D. J., Phillies and P., Peczak. The ubiquity of stretched-exponential forms in polymer dynamics. Macromolecules, 21 (1988), 214–220.Google Scholar
[50] G. D. J., Phillies, A., Saleh, L., Li, et al.Temperature dependence of probe diffusion in solutions of low-molecular-weight polyelectrolytes. Macromolecules, 24 (1991), 5299–5304.Google Scholar
[51] G. D. J., Phillies, D., Rostcheck, and S., Ahmed. Probe diffusion in intermediate-molecular-weight polyelectrolytes: temperature dependence. Macromolecules, 25 (1992), 3689–3694.Google Scholar
[52] G. D. J., Phillies and C. A., Quinlan. Glass temperature effects in probe diffusion in dextran solutions. Macromolecules, 25 (1992), 3110–3116.Google Scholar
[53] G. D. J., Phillies and C. A., Quinlan. Analytic structure of the solutionlike–meltlike transition in polymer solution dynamics. Macromolecules, 28 (1995), 160–164.Google Scholar
[54] G. D. J., Phillies. Range of validity of the hydrodynamic scaling model. J. Phys. Chem., 96 (1992), 10061–10066.Google Scholar
[55] G. D. J., Phillies. Quantitative prediction of α in the scaling law for self-diffusion. Macromolecules, 21 (1988), 3101–3106.Google Scholar
[56] W., Brown and R., Rymden. Diffusion of polystyrene latex spheres in polymer solutions studied by dynamic light scattering. Macromolecules, 19 (1986), 2942–2952.Google Scholar
[57] T., Yang and A. M., Jamieson. Diffusion of latex spheres through solutions of hydroxypropylcellulose in water. J. Coll. Interf. Sci., 126 (1988), 220–230.Google Scholar
[58] P. S., Russo, M., Mustafa, T., Cao, and L. K., Stephens. Interactions between polystyrene latex spheres and a semiflexible polymer, hydroxypropylcellulose. J. Coll. Interf. Sci., 122 (1988), 120–137.Google Scholar
[59] M., Mustafa and P. S., Russo. Nature and effects of nonexponential correlation functions in probe diffusion experiments by quasielastic light scattering. J. Coll. Interf. Sci., 129 (1989), 240–253.Google Scholar
[60] G. D. J., Phillies, C., Richardson, C. A., Quinlan, and S. Z., Ren. Transport in intermediate and high molecular weight hydroxypropylcellulose/water solutions. Macromolecules, 26 (1993), 6849–6858.Google Scholar
[61] K. L., Ngai and G. D. J., Phillies. Coupling model analysis of polymer dynamics in solution: probe diffusion and viscosity. J. Chem. Phys., 105 (1996), 8385–8397.Google Scholar
[62] K. L., Ngai. In Disorder Effects In Relaxation Processes. Eds. R., Richert and A., Blumen, (Berlin, Germany: Springer-Verlag, 1994).Google Scholar
[63] G. D. J., Phillies and M., Lacroix. Probe diffusion in hydroxypropylcellulose–water: Radius and line-shape effects in the solutionlike regime. J. Phys. Chem. B, 101 (1997), 39–47.Google Scholar
[64] K. A., Streletzky and G. D. J., Phillies. Translational diffusion of small and large mesoscopic probes in hydroxypropylcellulose–water in the solutionlike regime. J. Chem. Phys., 108 (1998), 2975–2988.Google Scholar
[65] K. A., Streletzky and G. D. J., Phillies. Relaxational mode structure for optical probe diffusion in high molecular weight hydroxypropylcellulose. J. Polym. Sci. B, 36 (1998), 3087–3100.Google Scholar
[66] K. A., Streletzky and G. D. J., Phillies. Confirmation of the reality of the viscoelastic solutionlike–meltlike transition via optical probe diffusion. Macromolecules, 32 (1999), 145–152.Google Scholar
[67] K. A., Streletzky and G. D. J., Phillies. Coupling analysis of probe diffusion in high molecular weight hydroxypropylcellulose. J. Phys. Chem. B, 103 (1999), 1811–1820.Google Scholar
[68] K. A., Streletzky and G. D. J., Phillies. Optical probe study of solution-like and melt-like solutions of high molecular weight hydroxypropylcellulose. In Scattering from Polymers. Ed. B.S., Hsiao, (Washington, D.C.: Am. Chem. Soc. Symp. Ser., 2000) 739, 297–316.Google Scholar
[69] G. D. J., Phillies, R., O'Connell, P., Whitford, and K. A., Streletzky. Mode structure of diffusive transport in hydroxypropylcellulose : water. J. Chem. Phys., 119 (2003), 9903–9913.Google Scholar
[70] R., O'Connell, H., Hanson, and G. D. J., Phillies. Neutral polymer slow mode and its rheological correlate. J. Polym. Sci. B. Polym. Phys., 43 (2005), 323–333.Google Scholar
[71] S. A., Kivelson, X., Zhao, D., Kivelson, T. M., Fischer, and C. M., Knobler. Frustration-limited clusters in liquids. J. Chem. Phys., 101 (1994), 2391–2397.Google Scholar
[72] G. H., Koenderink, S., Sacanna, D. G. A. L., Aarts, and A. P., Philipse. Rotational and translational diffusion of fluorocarbon tracer spheres in semidilute xanthan solutions. Phys. Rev. E, 69 (2004), 021804 1–12.Google Scholar
[73] R., Cush, D., Dorman, and P. S., Russo. Rotational and translational diffusion of tobacco mosaic virus in extended and globular polymer solutions. Macromolecules, 37 (2004), 9577–9584.Google Scholar
[74] R., Cush, P. S., Russo, Z., Kucukyavuz, et al.Rotational and translational diffusion of a rodlike virus in random coil polymer solutions. Macromolecules, 30 (1997), 4920–4926.Google Scholar
[75] T., Jamil and P. S., Russo. Interactions between colloidal poly(tetrafluoroethylene) latex and sodium poly(styrenesulfonate). Langmuir, 14 (1998), 264–270.Google Scholar
[76] J. G., Phalakornkul,A. P., Gast, and R., Pecora. Rotational dynamics of rodlike polymers in a rod/sphere mixture. J. Chem. Phys., 112 (2000), 6487–6494.Google Scholar
[77] G. D. J., Phillies, W., Brown, and P., Zhou. Chain and sphere diffusion in polyisobutylene–CHCl3: A reanalysis. Macromolecules, 25 (1982), 4948–4954.Google Scholar
[78] W., Brown and P., Zhou. Dynamic behavior in ternary polymer solutions. Polyisobutylene in chloroform studied using dynamic light scattering and pulsed field gradient NMR. Macromolecules, 22 (1989), 4031–4039.Google Scholar
[79] P., Zhou and W., Brown. Translational diffusion of large silica spheres in semidilute polyisobutylene solutions. Macromolecules, 22 (1989), 890–896.Google Scholar
[80] J., Apgar, Y., Tseng, E., Federov, et al.Multiple-particle tracking measurements of heterogeneities in solutions of actin filaments and actin bundles. Biophys. J., 79 (2000), 1095–1106.Google Scholar
[81] Y., Tseng and D., Wirtz. Mechanics and multiple-particle tracking microheterogeneity of α-actinin-cross-linked actin filament networks, Biophys. J., 81 (2001), 1643–1656.Google Scholar
[82] J. C., Crocker, M. T., Valentine, E. R., Weeks, et al.Two-point microrheology of inhomogeneous soft materials. Phys. Rev. Lett., 85 (2000), 888–891.Google Scholar
[83] M. L., Gardel, M. T., Valentine, J. C., Crocker, A. R., Bausch, and D. A., Weitz. Microrheology of entangled F-actin solutions. Phys. Rev. Lett., 91 (2003), 158302 1–4.Google Scholar
[84] D. T., Chen, E. R., Weeks, J. C., Crocker, et al.Rheological microscopy: local mechanical properties from microrheology. Phys. Rev. Lett., 90 (2003), 108301 1–4.Google Scholar
[85] A. J., Levine and T. C., Lubensky. Two-point microrheology and the electrostatic analogy. Phys. Rev. E, 65 (2001), 011501 1–13.Google Scholar
[86] M. A., Dichtl and E., Sackmann. Colloidal probe study of short time local and long time reptational motion of semiflexible macromolecules in entangled networks. New J. Physics, 1 (1999), 18.1–18.11.Google Scholar
[87] A., Goodman, Y., Tseng, and D., Wirtz. Effect of length, topology, and concentration on the microviscosity and microheterogeneity of DNA solutions. J. Mol. Bio., 323 (2002), 199–215.Google Scholar
[88] A. W. C., Lau, B. D., Hoffman, A., Davies, J. C., Crocker, and T. C., Lubensky. Microrheology, stress fluctuations, and active behavior of living cells. Phys. Rev. Lett., 91 (2003), 198101 1–4.Google Scholar
[89] A., Papagiannopolis, C. M., Ferneyhough, and T. A., Waigh. The microrheology of polystyrene sulfonate combs in aqueous solution. J. Chem. Phys., 123 (2005), 214904 1–10.Google Scholar
[90] B., Schnurr, F., Gittes, F. C., MacKintosh, and C. F., Schmidt. Determining microscopic viscoelasticity in flexible and semiflexible polymer networks from thermal fluctuations. Macromolecules, 30 (1997), 7781–7792.Google Scholar
[91] M. T., Valentine, Z. E., Perlman, M. L., Gardel, et al.Colloid surface chemistry critically affects multiple particle tracking measurements of biomaterials. Biophys. J., 86 (2004), 4004–4014.Google Scholar
[92] Z., Cheng and T. G., Mason. Rotational diffusion microrheology. Phys. Rev. Lett., 90 (2003), 018304 1–4.Google Scholar
[93] D.A., Hill and D. S., Soane. Measurement of rotational diffusivity of rodlike molecules in amorphous polymer matrices by the dynamic Kerr effect. J. Polymer Science B, 27 (1989), 2295–2320.Google Scholar
[94] J., Xu, Y., Tseng, C. J., Carriere, and D., Wirtz. Microheterogeneity and microrheology of wheat gliadin suspensions studied by multiple-particle tracking. Biomacro-molecules, 3 (2002), 92–99.Google Scholar
[95] F., Amblard, A. C., Maggs, B., Yurke, A. N., Pargellis, and S., Leibler. Subdiffusion and anomalous local viscoelasticity in actin networks. Phys. Rev. Lett., 77 (1996), 4470–4473.Google Scholar
[96] A. I., Bishop, T. A., Nieminen, N. R., Heckenberg, and H., Rubinsztein-Dunlop. Optical microrheology using rotating laser-trapped particles. Phys. Rev. Lett., 92 (2004), 198104 1–4.Google Scholar
[97] L.A., Hough and H. D., Ou-Yang. Anew probe for mechanical testing of nanostructures in soft materials. J. Nanoparticle Research, 1 (1999), 495–499.Google Scholar
[98] F. G., Schmidt, B., Hinner, and E., Sackmann. Microrheometry underestimates the values of the viscoelastic moduli in measurements on F-actin solutions compared to macrorheometry. Phys. Rev. E, 61 (2000), 5646–5653.Google Scholar
[99] M., Keller, J., Schilling, and E., Sackmann. Oscillatory magnetic bead rheometer for complex fluid microrheometry. Rev. Sci. Instr., 72 (2001), 3626–3634.Google Scholar
[100] A. C., Maggs. Micro-bead mechanics with actin filaments. Phys. Rev. E, 57 (1998), 2091–2094.Google Scholar
[101] F. G., Schmidt, B., Hinner, E., Sackmann, and J. X., Tang. Viscoelastic properties of semiflexible filamentous bacteriophage fd. Phys. Rev. E, 62 (2000), 5509–5517.Google Scholar
[102] D., Morse. Viscoelasticity of concentrated isotropic solutions of semiflexible polymers. 2. Linear response. Macromolecules, 31 (1998), 7044–7067.Google Scholar
[103] F., Madonia, P. L. San, Biagio, M. U., Palma, et al.Photon scattering as a probe of microviscosity and channel size in gels such as sickle haemoglobin. Nature, 302 (1983), 412–415.Google Scholar
[104] L., Johansson, U., Skantze, and J.-E., Loefroth. Diffusion and interaction in gels and solutions. 2. Experimental results on the obstruction effect. Macromolecules, 24 (1991), 6019–6023.Google Scholar
[105] I. H., Park, C. S., Johnson Jr., and D. A., Gabriel. Probe diffusion in polyacrylamide gels as observed by means of holographic relaxation methods: search for a universal equation. Macromolecules, 23 (1990), 1548–1553.Google Scholar
[106] J. Newman, N. Mroczka, and K. L., Schick. Dynamic light scattering measurements of the diffusion of probes in filamentatious actin solutions. Biopolymers, 28 (1989), 655–666.Google Scholar
[107] C. F., Schmidt, M., Baermann, G., Isenberg, and E., Sackmann. Chain dynamics, mesh size, and diffusive transport in networks of polymerized actin. A quasielastic light scattering and microfluorescence study. Macromolecules, 22 (1989), 3638–3649.Google Scholar
[108] K., Luby-Phelps, P. E., Castle, D. L., Taylor, and F., Lanni. Hindered diffusion of inert tracer particles in the cytoplasm of mouse 3T3 cells. Proc. Natl. Acad. Sci., 84 (1987), 4910–4913.Google Scholar
[109] M., Arrio-Dupont, S., Cribier, J., Foucault, P. F., Devaux, and A., D'Albis. Diffusion of fluorescently labelled macromolecules in cultured muscle cells. Biophys. J., 70 (1996), 2327–2332.Google Scholar
[110] M., Arrio-Dupont, G., Foucault, M., Vacher, P. F., Devaux, and S., Cribier. Translational diffusion of globular proteins in the cytoplasm of cultured muscle cells. Biophys. J., 78 (2000), 901–907.Google Scholar
[111] L., Hou, F., Lanni, and K., Luby-Phelps. Tracer diffusion in F-actin and ficoll mixtures. Toward a model for cytoplasm. Biophys. J., 58 (1990), 31–43.Google Scholar
[112] I. M., Wong, M. L., Gardel, D. R., Reichman, et al.Anomalous diffusion probes microstructure dynamics of entangled F-actin networks. Phys. Rev. Lett., 92 (2004), 178101 1–4.Google Scholar
[113] L. F., Rojas-Ochoa, S., Romer, F., Scheffold, and P., Schurtenberger. Diffusing wave spectroscopy and small-angle neutron scattering from concentrated colloidal suspensions. Phys. Rev. E, 65 (2002), 051403 1–8.Google Scholar
[114] For this insight I must thank the late P. J. Elving, Professor of Analytical Chemistry, the University of Michigan. Private communication.
[115] P. D., Kaplan, A. G., Yodh, and D. F., Townsend. Noninvasive study of gel formation in polymer-stabilized dense colloids using multiply scattered light. J. Coll. Interf. Sci., 155 (1993), 319–324.Google Scholar
[116] G., Popescu, A., Dogariu, and R., Rajagopalan. Spatially resolved microrheology using localized coherence volumes. Phys. Rev. E, 65 (2002), 041504 1–8.Google Scholar
[117] G., Popescu and A., Dogariu. Dynamic light scattering in localized coherence volumes. Optics Letters, 26 (2001), 551–553.Google Scholar
[118] I. S., Sohn, R. Rajagopalan, and A. C., Dogariu. Spatially resolved microrheology through a liquid/liquid interface. J. Coll. Interf. Sci., 269 (2004), 503–513.Google Scholar
[119] M. H., Kao, A. G., Yodh, and D. J., Pine. Observation of Brownian motion on the time scale of hydrodynamic interactions. Phys. Rev. Lett., 70 (1993), 242–245.Google Scholar
[120] P.-G., Gennes. Scaling Concepts in Polymer Physics. Third Printing, (Ithaca, NY: Cornell UP, 1988).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Probe diffusion
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.010
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Probe diffusion
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.010
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Probe diffusion
  • George D. J. Phillies, Worcester Polytechnic Institute, Massachusetts
  • Book: Phenomenology of Polymer Solution Dynamics
  • Online publication: 05 August 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511843181.010
Available formats
×