Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
5 - Quasi-invariance for the Navier–Stokes equations
Published online by Cambridge University Press: 15 August 2019
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
Summary
In this contribution we focus on a few results regarding the study of the three-dimensional Navier-Stokes equations with the use of vector potentials. These dependent variables are critical in the sense that they are scale invariant. By surveying recent results utilising criticality of various norms, we emphasise the advantages of working with scale-invariant variables. The Navier-Stokes equations, which are invariant under static scaling transforms, are not invariant under dynamic scaling transforms. Using the vector potential, we introduce scale invariance in a weaker form, that is, invariance under dynamic scaling modulo a martingale (Maruyama-Girsanov density) when the equations are cast into Wiener path-integrals. We discuss the implications of this quasi-invariance for the basic issues of the Navier-Stokes equations.
Keywords
- Type
- Chapter
- Information
- Partial Differential Equations in Fluid Mechanics , pp. 97 - 112Publisher: Cambridge University PressPrint publication year: 2018