Book contents
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
8 - Energy conservation in the 3D Euler equations on T2 × R+
Published online by Cambridge University Press: 15 August 2019
- Frontmatter
- Contents
- Contributors
- Preface
- 1 Remarks on recent advances concerning boundary effects and the vanishing viscosity limit of the Navier–Stokes equations
- 2 Time-periodic flow of a viscous liquid past a body
- 3 The Rayleigh–Taylor instability in buoyancy-driven variable density turbulence
- 4 On localization and quantitative uniqueness for elliptic partial differential equations
- 5 Quasi-invariance for the Navier–Stokes equations
- 6 Leray’s fundamental work on the Navier–Stokes equations: a modern review of “Sur le mouvement d’un liquide visqueux emplissant l’espace”
- 7 Stable mild Navier–Stokes solutions by iteration of linear singular Volterra integral equations
- 8 Energy conservation in the 3D Euler equations on T2 × R+
- 9 Regularity of Navier–Stokes flows with bounds for the velocity gradient along streamlines and an effective pressure
- 10 A direct approach to Gevrey regularity on the half-space
- 11 Weak-Strong Uniqueness in Fluid Dynamics
Summary
The aim of this paper is to prove energy conservation for the incompressible Euler equations in a domain with boundary. We work in the domain $$\TT^2\times\R_+$$, where the boundary is both flat and has finite measure; in this geometry we do not require any estimates on the pressure, unlike the proof in general bounded domains due to Bardos & Titi (2018). However, first we study the equations on domains without boundary (the whole space $$\R^3$$, the torus $$\mathbb{T}^3$$, and the hybrid space $$\TT^2\times\R$$). We make use of somearguments due to Duchon & Robert (2000) to prove energy conservation under the assumption that $$u\in L^3(0,T;L^3(\R^3))$$ and $${|y|\to 0}\frac{1}{|y|}\int^T_0\int_{\R^3} |u(x+y)-u(x)|^3\,\d x\,\d t=0$$ or $$\int_0^T\int_{\R^3}\int_{\R^3}\frac{|u(x)-u(y)|^3}{|x-y|^{4+\delta}}\,\d x\,\d y\,\d t<\infty,\qquad\delta>0$$, the second of which is equivalent to $$u\in L^3(0,T;W^{\alpha,3}(\R^3))$$, $$\alpha>1/3$$.
- Type
- Chapter
- Information
- Partial Differential Equations in Fluid Mechanics , pp. 224 - 251Publisher: Cambridge University PressPrint publication year: 2018
- 2
- Cited by