Summary
Some snakes are the only vertebrates able to engulf prey with cross-sectional areas several times larger than the area encompassed by the snake’s jaws at peak gape. This ability is conferred by modifying soft tissues ventral to the axial musculoskeletal system for extraordinary extensibility between the mandibles and stomach. Moving large prey into the gut depends on structural decoupling of toothed jaws from the braincase. In all living snakes, kinetic jaws form mobile ratchets. In scolecophidians, transverse maxillary or dentary ratchets have evolved to move small prey into the gut. In alethinophidians, longitudinal palatopterygoid ratchets move the head and body of the snake over the prey. Evidence from extant snakes shows that streptostyly, prokinesis, rhinokinesis and loss of all ventral skeletal elements connected to the axial skeleton were critical to evolution of the upper-jaw ratchet on which macrostomy is based. The existing fossil record gives tantalizing clues that suggest the ancestor of snakes might have been macrostomous. Resolution of this issue will require structural details of the snout, braincase, and toothed ratchets in both ‘basal’ extant snakes and fossils.
-
Type
-
Chapter
-
Information
-
Publisher: Cambridge University Press
Print publication year: 2022
Access options
Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)
References
1
Cundall, D. and
Greene, H. W.,
Feeding in snakes. In
Schwenk, K., ed.,
Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (
San Diego, CA:
Academic Press,
2000), pp.
293–
333.
CrossRefGoogle Scholar
2
Cundall, D. and
Irish, F.,
The snake skull. In
Gans, C.,
Gaunt, A. S. and
Adler, K., eds.,
Biology of the Reptilia, Vol. 20,
Morphology H. (
Ithaca, NY:
Society for the Study of Amphibians and Reptiles,
2008), pp.
349–
692.
Google Scholar
3
Moon, B. R.,
Penning, D. A.,
Segall, M., and
Herrel, A.,
Feeding in snakes: Form, function, and evolution of the feeding system. In
Bels, V. and
Whishaw, I. Q., eds.,
Feeding in Vertebrates: Evolution, Morphology, Behaviour, Biomechanics (
Switzerland:
Springer Nature,
2019), pp.
527–
574.
Google Scholar
4
Greene, H. W.,
Snakes: The Evolution of Mystery in Nature (
Berkeley, CA:
University of California Press,
1997).
Google Scholar
5
Rieppel, O.,
A review of the origin of snakes.
Evolutionary Biology,
22 (
1988),
37–
130.
Google Scholar
6
Müller, J.,
Beiträge zur Anatomie und Naturgeschichtte der Amphibien.
Zeitschrift für Physiologie,
4 (
1832),
190–
275.
Google Scholar
7
Harrington, S. and
Reeder, T.,
Phylogenetic inference and divergence dating of snakes using molecules, morphology and fossils: new insights into convergent evolution of feeding morphology and limb reduction.
Biological Journal of the Linnean Society,
121 (
2017),
379–
394.
Google Scholar
8
Burbrink, F. T.,
Grazziotin, F. G.,
Pyron, R. A.,
et al.,
Interrogating genomic-scale data for Squamata (lizards, snakes, and amphisbaenians) shows no support for key traditional morphological relationships.
Systematic Biology,
69 (
2020),
502–
520.
Google Scholar
9
Caldwell, M. W.,
The Origin of Snakes: Morphology and the Fossil Record (
Boca Raton, FL:
CRC Press,
2020).
Google Scholar
10
Greene, H. W.,
Dietary correlates of the origin and radiation of snakes.
American Zoologist,
23 (
1983),
431–
441.
CrossRefGoogle Scholar
11
Hsiang, A. Y.,
Field, D. J.,
Webster, T. H.,
et al.,
The origin of snakes: revealing the ecology, behaviour, and evolutionary history of early snakes using genomics, phenomics, and the fossil record.
BMC Evolutionary Biology,
15 (
2015),
87.
Google Scholar
12
Scanferla, A.,
Post-natal ontogeny and the evolution of macrostomy in snakes.
Royal Society Open Science,
3 (
2016), 160612.
Google Scholar
13
Bezuijen, M. R.,
Field observation of a large prey item consumed by a small Cylindrophis ruffus (Laurenti, 1768) (Serpentes: Cylindrophiidae).
Hamadryad,
34 (
2009),
185–
187.
Google Scholar
14
Kusamba, C.,
Resetar, A.,
Wallach, V.,
Lulengo, K., and
Nagy, Z. T.,
Mouthful of snake: An African snake-eater’s (Polemon fulvicollis graueri) large typhlopid prey.
Herpetology Notes,
6 (
2013),
235–
237.
Google Scholar
15
Jackson, K.,
Kley, N. J., and
Brainerd, E. L.,
How snakes eat snakes: the biomechanical challenges of ophiophagy for the California kingsnake, Lampropeltis getula californiae (Serpentes: Colubridae).
Zoology,
107 (
2004),
191–
200.
CrossRefGoogle ScholarPubMed
16
Cundall, D.,
A few puzzles in the evolution of feeding mechanisms in snakes.
Herpetologica,
75 (
2019),
99–
107.
Google Scholar
17
Schwenk, K. and
Rubega, M.,
Diversity of vertebrate feeding systems. In
Stark, J. M. and
Wang, T., eds.,
Physiological and ecological adaptations to feeding in vertebrates (
Enfield, NH:
Science Publishers,
2005), pp.
1–
41.
Google Scholar
18
Jayne, B. C.,
Voris, H. K., and
Ng, P. K. L.,
How big is too big? Using crustacean-eating snakes (Homalopsidae) to test how anatomy and behavior affect prey size and feeding performance.
Biological Journal of the Linnean Society,
123 (
2018),
636–
650.
CrossRefGoogle Scholar
19
Gripshover, N. H. and
Jayne, B. C.,
Crayfish eating in snakes: testing how anatomy and behavior affect prey size and feeding performance.
Integrative Organismal Biology,
3 (
2021), obab001.
CrossRefGoogle ScholarPubMed
20
Close, M. and
Cundall, D.,
Snake lower jaw skin: Extension and recovery of a hyperextensible keratinized integument.
Journal of Experimental Zoology,
321A (
2014),
78–
97.
CrossRefGoogle Scholar
21
Close, M.,
Perni, S.,
Franzini-Armstrong, C.,, and
Cundall, D.,
Highly extensible skeletal muscle in snakes.
Journal of Experimental Biology,
217 (
2014),
2445–
2448.
Google Scholar
22
Young, B. A.,
The arthrology of the head of the Red-sided Garter snake, Thamnophis sirtalis parietalis
.
Netherlands Journal of Zoology,
38 (
1988),
166–
205.
CrossRefGoogle Scholar
23
Young, B. A.,
The comparative morphology of the intermandibular connective tissue in snakes (Reptilia: Squamata).
Zoologischer Anzeiger,
237 (
1998),
59–
84.
Google Scholar
24
Young, B. A. The comparative morphology of the mandibular midline raphe in snakes (Reptilia: Squamata).
Zoologischer Anzeiger,
237 (
1998–1999),
217–
241.
Google Scholar
25
Cundall, D. and
Beaupre, S. J.,
Field records of predatory strike kinematics in rattlesnakes, Crotalus horridus
.
Amphibia-Reptilia,
22 (
2001),
492–
498.
Google Scholar
26
Cundall, D.,
Viper fangs: Functional limitations of extreme teeth,
Physiological and Biochemical Zoology: Ecological and Evolutionary Approaches,
82 (
2009),
63–
79.
Google Scholar
27
Gauthier, J. A.,
Kearney, M.,
Maisano, J. A.,
Rieppel, O., and
Behlke, D. B.,
Assembling the squamate tree of life: Perspectives from the phenotype and the fossil record.
Bulletin of the Peabody Museum of Natural History,
53 (
2012),
3–
308.
Google Scholar
28
Greer, A. E.,
Limb reduction in squamates: Identification of the lineages and discussion of the trends.
Journal of Herpetology,
25 (
1991),
166–
173.
Google Scholar
29
Tsuihiji, T.,
Kearney, M., and
Rieppel, O.,
First report of a pectoral girdle muscle in snakes, with comments on the snake cervico-dorsal boundary.
Copeia,
2006 (
2006),
206–
215.
CrossRefGoogle Scholar
30
Tsuihiji, T.,
Kearney, M., and
Rieppel, O.,
Finding the neck-trunk boundary in snakes: Anteroposterior dissociation of myological characteristics in snakes and its implications for their neck and trunk body regionalization.
Journal of Morphology,
273 (
2012),
992–
1009.
Google Scholar
31
Leal, F. and
Cohn, M. J.,
Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes.
Genesis: The Journal of Genetics and Development,
56 (
2018), e23077.
Google Scholar
32
Gasc, J.-P.,
Axial musculature. In
Gans, C. and
Parsons, T. S., eds.,
Biology of the Reptilia, Vol. 11,
Morphology F (
London:
Academic Press,
1981), pp.
355–
435.
Google Scholar
33
Rivera, G.,
Savitzky, A. H., and
Hinkley, J. A.,
Mechanical properties of the integument of the common gartersnake, Thamnophis sirtalis (Serpentes: Colubridae).
Journal of Experimental Biology,
208 (
2005),
2913–
2922.
Google Scholar
34
Buffa, P.,
Ricerche sulla muscolatura cutanea dei serpenti e considerazioni sulla locomozione di questi animali.
Atti della Accademia scientifica veneto-trentino-istriana,
1 (
1904),
145–
237.
Google Scholar
35
Fetcho, J. R.,
The organization of motor neurons innervating the axial musculature of vertebrates. II. Florida water snakes (Nerodia fasciata pictiventris).
Journal of Comparative Neurology,
249 (
1986),
551–
563.
Google Scholar
36
Vogl, A. W.,
Lillie, M. A.,
Piscitelli, M. A.,
et al.,
Stretchy nerves are an essential component of the extreme feeding mechanism of rorqual whales.
Current Biology,
25 (
2015),
R345–
R361.
Google Scholar
37
Apodaca, G.,
The uroepithelium: Not just a passive barrier.
Traffic,
5 (
2004),
117–
128.
Google Scholar
38
Eaton, A. F.,
Clayton, D. R.,
Ruiz, W. G.,
et al.,
Expansion and contraction of the umbrella cell apical junctional ring in response to bladder filling and voiding.
Molecular Biology of the Cell,
30 (
2019),
2037–
2052.
Google Scholar
39
Burke, A. C. and
Nowicki, J. L.,
A new view of patterning domains in the vertebrate mesoderm.
Developmental Cell,
4 (
2003),
159–
165.
Google Scholar
40
Head, J. J. and
Polly, P. D.,
Evolution of the snake body form reveals homoplasy in amniote Hox gene function.
Nature,
520 (
2015),
86–
89.
Google Scholar
41
Mosauer, W.,
The myology of the trunk region of snakes and its significance for ophidian taxonomy and phylogeny.
Publications of the University of California at Los Angeles in Biological Sciences,
1 (
1935),
81–
120.
Google Scholar
42
Ottaviani, G. and
Tazzi, A.,
The lymphatic system. In
Gans, C. and
Parsons, T. S., eds.,
Biology of the Reptilia, Vol. 6,
Morphology E (
London:
Academic Press,
1977), pp.
315–
464.
Google Scholar
43
Cundall, D.,
Tuttman, C., and
Close, M.,
A model of the anterior esophagus in snakes, with functional and developmental implications.
Anatomical Record,
297 (
2014),
586–
598.
Google Scholar
45
Lee, M. S. Y.,
Convergent evolution and character correlation in burrowing reptiles: towards a resolution of squamate relationships.
Biological Journal of the Linnean Society,
65 (
1998),
369–
453.
CrossRefGoogle Scholar
46
McDowell, S. B., Jr.,
The skull of Serpentes. In
Gans, C.,
Gaunt, A. S., and
Adler, K., eds.,
Biology of the Reptilia, Vol. 21,
Morphology I.
(Ithaca, NY:
Society for the Study of Amphibians and Reptiles,
2008), pp.
467–
620.
Google Scholar
47
Abdeen, A. M.,
Abo-Taira, A. M., and
Zaher, M. M,
Further studies on the ophidian cranial osteology: the skull of the Egyptian blind snake Leptotyphlops cairi (Leptotyphlopidae). I. The cranium. A – The median dorsal bones, bones of the upper jaw, circumorbital bone and occipital ring.
Journal of the Egyptian-German Society of Zoology,
5 (
1991),
417–
437.
Google Scholar
48
Abdeen, A. M.,
Abo-Taira, A. M., and
Zaher, M. M,
Further studies on the ophidian cranial osteology: The skull of the Egyptian blind snake Leptotyphlops cairi (Leptotyphlopidae). I. The cranium. B – The otic capsule, palate and temporal bones.
Journal of the Egyptian-German Society of Zoology,
5 (
1991),
439–
455.
Google Scholar
49
Broadley, D. G. and
Broadley, S.,
A review of the African worm snakes from south of latitude 12°S (Serpentes: Leptotyphlopidae).
Syntarsus,
5 (
1999),
1–
36.
Google Scholar
50
Boughner, J. C.,
Buchtova, M.,
Fu, K.,
et al.,
Embryonic development of Python sebae. I. Staging criteria and macroscopic skeletal morphogenesis of the head and limbs.
Zoology,
110 (
2007),
212–
230.
Google Scholar
51
Boback, S. M.,
Dichter, E. K., and
Mistry, H. L.,
A developmental staging series for the African house snake, Boaedon (Lamprophis) fuliginosus
.
Zoology,
115 (
2012),
38–
46.
Google Scholar
52
Polachowski, K. M. and
Werneburg, I.,
Late embryos and bony skull development in Bothropoides jararaca (Serpentes, Viperidae).
Zoology,
116 (
2013),
36–
63.
Google Scholar
53
Khannoon, E. R. and
Evans, S. E.,
The development of the skull of the Egyptian cobra Naja h. haje (Squamata: Serpentes: Elapidae).
PLoS ONE,
10 (
2015), e0122185.
Google Scholar
54
Irish, F. J.,
The role of heterochrony in the origin of a novel bauplan: evolution of the ophidian skull.
Geobios, Mémoires Special,
12 (
1989),
227–
233.
CrossRefGoogle Scholar
55
Werneburg, I.,
Polachowski, K. M., and
Hutchinson, M. N.,
Bony skull development in the Argus Monitor (Squamata, Varanidae, Varanus panoptes) with comments on developmental timing and adult anatomy.
Zoology,
118 (
2015),
255–
280.
Google Scholar
56
Kley, N. J. and
Brainerd, E. L.,
Post-cranial prey transport mechanisms in the black pinesnake, Pituophis melanoleucus lodingi: an x-ray videographic study.
Zoology,
105 (
2002),
153–
164.
CrossRefGoogle ScholarPubMed
57
Kiran, U.,
A new structure in the lower jaw of colubrid snakes.
Snake,
13 (
1981),
131–
133.
Google Scholar
58
Cundall, D.,
Feeding behaviour in Cylindrophis and its bearing on the evolution of alethinophidian snakes.
Journal of Zoology, London,
237 (
1995),
353–
376.
Google Scholar
59
Kley, N. J.,
Prey transport mechanisms in blindsnakes and the evolution of unilateral feeding systems in snakes.
American Zoologist,
41 (
2001),
1321–
1337.
Google Scholar
60
Schwenk, K.,
Feeding in lepidosaurs. In
Schwenk, K., ed.,
Feeding: Form, Function, and Evolution in Tetrapod Vertebrates (
San Diego, CA:
Academic Press,
2000), pp.
175–
291.
Google Scholar
61
Frazzetta, T. H.,
A functional consideration of cranial kinesis in lizards.
Journal of Morphology,
111 (
1962),
287–
320.
CrossRefGoogle ScholarPubMed
62
Frazzetta, T. H.,
Morphology and function of the jaw apparatus in Python sebae and Python molurus
.
Journal of Morphology,
118 (
1966),
217–
296.
Google Scholar
63
Cundall, D. and
Shardo, J.,
Rhinokinetic snout of thamnophiine snakes.
Journal of Morphology,
225 (
1995),
31–
50.
Google Scholar
64
Shcherbakov, D. E.,
Tim, T.,
Tzetlin, A. B.,
Vinn, O., and
Zhuravlev, A. Y.,
A probable oligochaete from an Early Triassic Lagerstätte of the southern Cis-Urals and its evolutionary implications.
Acta Palaeontologica Polonica,
65 (
2020),
219–
233.
CrossRefGoogle Scholar
65
Zaher, H. and
Scanferla, C. A.,
The skull of the Upper Cretaceous snake Dinilysia patagonica Smith-Woodward, 1901, and its phylogenetic position revisited.
Zoological Journal of the Linnean Society,
164 (
2012),
194–
238.
Google Scholar
66
Gower, D. J.,
Giri, V.,
Captain, A., , and
Wilkinson, M.,
A reassessment of Melanophium Günther, 1864 (Squamata: Serpentes: Uropeltidae) from the Western Ghats of peninsular India, with description of a new species.
Zootaxa,
4085 (
2016),
481–
503.
Google Scholar
67
Boltt, R. E. and
Ewer, R. F.,
The functional anatomy of the head of the puff adder, Bitis arietans (Merr.).
Journal of Morphology,
114 (
1964),
83–
106.
Google Scholar
68
Greene, H. W. and
Burghardt, G. M.,
Behaviour and phylogeny: Constriction in ancient and modern snakes.
Science,
200 (
1978),
74–
77.
CrossRefGoogle ScholarPubMed
69
Head, J. J.,
Mahlow, K., and
Müller, J.,
Fossil calibration dates for molecular phylogenetic analysis of snakes 2: Caneophidia, Colubroidea, Elapoidea, Colubridae.
Palaeontologia Electronica 19.2.2FC (
2016),
1–
21.
CrossRefGoogle Scholar
70
Hargreaves, A. D.,
Swain, M. T.,
Logan, D. W., and
Mulley, J. F.,
Testing the Toxicofera: Comparative transcriptomics casts doubt on the single, early evolution of the reptile venom system.
Toxicon,
92 (
2015),
140–
156.
Google Scholar
71
Sweet, S. S.,
Chasing flamingos: Toxicofera and the misinterpretation of venom in varanid lizards. In
Cota, M., ed.,
Proceedings of the 2015 Interdisciplinary World Conference on Monitor Lizards (
Bangkok, Thailand:
Institute for Research and Development, Suan Sunandha Rajhabat University,
2016), pp.
123–
149.
Google Scholar
72
Radcliffe, C. W. and
Chiszar, D. A.,
A descriptive analysis of predatory behavior in the yellow-lipped sea krait (Laticauda colubrina).
Journal of Herpetology,
14 (
1980),
422–
424.
Google Scholar
73
Miralles, A.,
Marin, J.,
Markus, D.,
et al.,
Molecular evidence for the paraphyly of Scolecophidia and its evolutionary implications.
Journal of Evolutionary Biology,
31 (
2018),
1782–
1793.
Google Scholar
74
Zaher, H., and
Smith, K. T.,
Pythons in the Eocene of Europe reveal a much older divergence of the group in sympatry with boas.
Biology Letters,
16 (
2020), 20200735.
Google Scholar
75
Rage, J.-C.,
Serpentes, In
Wellnhofer, P., ed.,
Handbuch der Paläoherpetologie/ Encyclopedia of Paleontology, Part 11
. (
Stuttgart:
Gustav Fischer,
1984), pp.
1–
80.
Google Scholar
76
Rage, J.-C.,
Fossil snakes. In
Seigel, R. A.,
Collins, J. T., and
Novak, S. S., eds.,
Snakes: Ecology and Evolutionary Biology (
New York:
Macmillan,
1987), pp.
51–
76.
Google Scholar
77
Rieppel, O., H.,
Zaher, E. Tchernov, ,, and
Polcyn, M. J.,
The anatomy and relationships of Haasiophis terrasanctus, a fossil snake with well-developed hind limbs from the mid-Cretaceous of the Middle East.
Journal of Paleontology,
77 (
2003),
536–
558.
Google Scholar
78
Zaher, H.,
Apesteguía, S., and
Scanferla, C. A.,
The anatomy of the upper cretaceous snake Najash rionegrina Apesteguía & Zaher, 2006, and the evolution of limblessness in snakes.
Zoological Journal of the Linnean Society,
156 (
2009),
801–
826.
Google Scholar
79
Garberoglio, F. F.,
Apesteguía, S.,
Simões, T. R.,
et al.,
New skulls and skeletons of the Cretaceous legged snake Najash, and the evolution of the modern snake body plan. Science
Advances,
5 (
2019), eaax5833.
Google Scholar
80
Cundall, D., Review of
Caldwell, M. W.,
the origin of snakes: morphology and the fossil record.
Herpetological Review,
51 (
2020),
364–
368.
Google Scholar
81
Koch, N. M. and
Gauthier, J. A.,
Noise and biases in genomic data may underlie radically different hypotheses for the position of Iguania within Squamata.
PLoS ONE,
13 (
2018), e0202729.
Google Scholar Accessibility information