Book contents
- Frontmatter
- Contents
- Contributors
- Foreword
- Preface
- 1 Opioid Receptors: Gene Structure and Function
- 2 Endogenous Opioid Peptides and Analgesia
- 3 Supraspinal Mechanisms of Opioid Analgesia
- 4 Spinal Mechanisms of Opioid Analgesia
- 5 Peripheral Opioid Analgesia: Mechanisms and Clinical Implications
- 6 Mechanisms of Tolerance
- 7 Opioid–Nonopioid Interactions
- 8 Transplantation of Opioid-Producing Cells
- 9 Clinical Implications of Physicochemical Properties of Opioids
- 10 Clinical Pharmacology and Adverse Effects
- 11 Pre-emptive Analgesia by Opioids
- 12 Intraoperative Use of Opioids
- 13 Opioids in Acute Pain
- 14 Patient-Controlled Analgesia with Opioids
- 15 Opioids in Chronic Nonmalignant Pain
- 16 Opioids in Cancer Pain
- 17 Opioids in Visceral Pain
- 18 Opioids in Obstetrics
- Index
1 - Opioid Receptors: Gene Structure and Function
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Contributors
- Foreword
- Preface
- 1 Opioid Receptors: Gene Structure and Function
- 2 Endogenous Opioid Peptides and Analgesia
- 3 Supraspinal Mechanisms of Opioid Analgesia
- 4 Spinal Mechanisms of Opioid Analgesia
- 5 Peripheral Opioid Analgesia: Mechanisms and Clinical Implications
- 6 Mechanisms of Tolerance
- 7 Opioid–Nonopioid Interactions
- 8 Transplantation of Opioid-Producing Cells
- 9 Clinical Implications of Physicochemical Properties of Opioids
- 10 Clinical Pharmacology and Adverse Effects
- 11 Pre-emptive Analgesia by Opioids
- 12 Intraoperative Use of Opioids
- 13 Opioids in Acute Pain
- 14 Patient-Controlled Analgesia with Opioids
- 15 Opioids in Chronic Nonmalignant Pain
- 16 Opioids in Cancer Pain
- 17 Opioids in Visceral Pain
- 18 Opioids in Obstetrics
- Index
Summary
Introduction
Opiates, the prototype of which is morphine, are potent analgesic and addictive drugs that act through opioid receptors (Barnard, 1993; Browstein, 1993). The opioid system plays a major role in pain-controlling systems (Dickenson, 1991) and affective behavior, including motivation and reward (Di Chiara and North, 1992; Koob 1992). It also modulates locomotor activity, learning and memory, neuroendocrine physiology, and autonomic and immune functions (Olson et al., 1996). Three classes of opioid receptors, μ, δ, and κ, have been identified by pharmacologic approaches (Goldstein and Naidu, 1989). Their endogenous ligands are the opioid peptides (enkephalins, endorphins, and dynorphins), which share a common N-terminal sequence (NH2-Tyr-Gly-Gly-Phe-Met/Leu-COOH), and are encoded by three different genes known as preproopiomelanocortin, preproenkephalin, and prodynorphin (Day et al., 1993; Rossier, 1993; Young et al., 1993). A new class of highly μ-selective endogenous peptides has been discovered recently (Zadina et al., 1997). These short tetrapeptides, called endomorphines, are structurally distinct from opioid peptides (NH2-Tyr-Pro-Trp/Phe-Phe-CONH2), and their genes still need to be isolated. The understanding of pain control or drug addiction, and the development of novel classes of analgesic compounds, require a detailed knowledge of the molecular properties of opioid receptors. Although opioid binding sites have been extensively characterized in the last two decades on the basis of opioid ligand pharmacology, the molecular characterization of the receptors has been initiated only recently (Evans et al., 1992; Kieffer et al., 1992).
- Type
- Chapter
- Information
- Opioids in Pain ControlBasic and Clinical Aspects, pp. 1 - 20Publisher: Cambridge University PressPrint publication year: 1998
- 5
- Cited by