Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-05T09:27:24.719Z Has data issue: false hasContentIssue false

Section 3 - Copper and Vitamin D Deficiency

Published online by Cambridge University Press:  02 April 2019

Robert T. Means Jr
Affiliation:
East Tennessee State University
Get access
Type
Chapter
Information
Nutritional Anemia
Scientific Principles, Clinical Practice, and Public Health
, pp. 103 - 142
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Fox, P. L. The copper-iron chronicles: the story of an intimate relationship. Biometals. 2003;16(1):940.CrossRefGoogle ScholarPubMed
Tapiero, H., Townsend, D. M., Tew, K. D. Trace elements in human physiology and pathology. Copper. Biomed Pharmacother. 2003;57(9):386–98.Google ScholarPubMed
Klevay, L. M. Is the Western diet adequate in copper? J Trace Elem Med Biol. 2011;25(4):204–12.CrossRefGoogle ScholarPubMed
van den Berghe, P. V., Klomp, L. W. New developments in the regulation of intestinal copper absorption. Nutr Rev. 2009;67(11):658–72.CrossRefGoogle ScholarPubMed
Prodan, C. I., Bottomley, S. S., Vincent, A. S., et al. Copper deficiency after gastric surgery: a reason for caution. Am J Med Sci. 2009;337(4):256–8.CrossRefGoogle ScholarPubMed
Ohgami, R. S., Campagna, D. R., McDonald, A., Fleming, M. D. The Steap proteins are metalloreductases. Blood. 2006;108(4):1388–94.CrossRefGoogle ScholarPubMed
Tennant, J., Stansfield, M., Yamaji, S., Srai, S. K., Sharp, P. Effects of copper on the expression of metal transporters in human intestinal Caco-2 cells. FEBS Lett. 2002;527(1–3):239–44.CrossRefGoogle ScholarPubMed
Lambe, T., Simpson, R. J., Dawson, S., et al. Identification of a Steap3 endosomal targeting motif essential for normal iron metabolism. Blood. 2008:2007.Google ScholarPubMed
Liu, D., Yi, S., Zhang, X., et al. Human STEAP3 mutations with no phenotypic red cell changes. Blood. 2016;127(8):1067–71.CrossRefGoogle ScholarPubMed
Zhang, F., Tao, Y., Zhang, Z., et al. Metalloreductase Steap3 coordinates the regulation of iron homeostasis and inflammatory responses. Haematologica. 2012;97(12):1826–35.CrossRefGoogle ScholarPubMed
Scarl, R. T., Lawrence, C. M., Gordon, H. M., Nunemaker, C. S. STEAP4: its emerging role in metabolism and homeostasis of cellular iron and copper. J Endocrinol. 2017;234(3): R123–R134.CrossRefGoogle ScholarPubMed
Madsen, E., Gitlin, J. D. Copper deficiency. Curr Opin Gastroenterol. 2007;23(2):187–92.CrossRefGoogle ScholarPubMed
Mims, M. P., Prchal, J. T. Divalent metal transporter 1. Hematology. 2005;10(4):339–45.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Keyes, W. R., Anderson, H. L., Acord, L. L. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 1989;49(5):870–8.CrossRefGoogle ScholarPubMed
de Romana, D. L., Olivares, M., Uauy, R., Araya, M. Risks and benefits of copper in light of new insights of copper homeostasis. J Trace Elem Med Biol. 2011;25(1):313.CrossRefGoogle ScholarPubMed
Troost, F. J., Brummer, R. J., Dainty, J. R., et al. Iron supplements inhibit zinc but not copper absorption in vivo in ileostomy subjects. Am J Clin Nutr. 2003;78(5):1018–23.CrossRefGoogle Scholar
O'Halloran, T. V., Culotta, V. C. Metallochaperones, an intracellular shuttle service for metal ions. J Biol Chem. 2000;275(33):25057–60.CrossRefGoogle ScholarPubMed
Field, L. S., Luk, E., Culotta, V. C. Copper chaperones: personal escorts for metal ions. J Bioenerg Biomembr. 2002;34(5):373–9.CrossRefGoogle ScholarPubMed
Hamza, I., Gitlin, J. D. Copper chaperones for cytochrome c Oxidase and human disease. J Bioenerg Biomembr. 2002;34(5):381–8.CrossRefGoogle ScholarPubMed
Dodani, S. C., Leary, S. C., Cobine, P. A., Winge, D. R., Chang, C. J. A targetable fluorescent sensor reveals that copper-deficient SCO1 and SCO2 patient cells prioritize mitochondrial copper homeostasis. J Am Chem Soc. 2011;133(22):8606–16.CrossRefGoogle ScholarPubMed
Lutsenko, S., Efremov, R. G., sivkovskii, R., Alker, J. M. Human copper-transporting ATPase ATP7B (the Wilson's Disease protein): biochemical properties and regulation. J Bioenerg Biomembr. 2002;34(5):351–62.CrossRefGoogle ScholarPubMed
Lutsenko, S., Bhattacharjee, A., Hubbard, A. L. Copper handling machinery of the brain. Metallomics. 2010;2(9):596608.CrossRefGoogle ScholarPubMed
Voskoboinik, I., Camakaris, J. Menkes copper-translocating P-type ATPase (ATP7A): biochemical and cell biology properties, and role in Menkes Disease. J Bioenerg Biomembr. 2002;34(5):363–71.CrossRefGoogle ScholarPubMed
Monty, J. F., Llanos, R. M., Mercer, J. F., Kramer, D. R. Copper exposure induces trafficking of the menkes protein in intestinal epithelium of ATP7A transgenic mice. J Nutr. 2005;135(12):2762–6.CrossRefGoogle ScholarPubMed
Hardman, B., Manuelpillai, U., Wallace, E. M., et al. Expression, localisation and hormone regulation of the human copper transporter hCTR1 in placenta and choriocarcinoma Jeg-3 cells. Placenta. 2006;27(9–10):968–77.CrossRefGoogle ScholarPubMed
Miyajima, H. Aceruloplasminemia, an iron metabolic disorder. Neuropathology. 2003;23(4):345–50.CrossRefGoogle ScholarPubMed
Nittis, T., Gitlin, J. D. The copper-iron connection: hereditary aceruloplasminemia. Semin Hematol. 2002;39(4):282–9.CrossRefGoogle ScholarPubMed
Sasina, L. K., Puchkova, L. V., Gaitskhoki, V. S. Study of intracellular localization and traffic of newly synthesized ceruloplasmin receptor in cultured human fibroblasts. Biochemistry (Mosc). 1998;63(10):1172–7.Google ScholarPubMed
Sasina, L. K., Tsymbalenko, N. V., Platonova, N. A., et al. Isolation and partial characterization of cDNA clone of human ceruloplasmin receptor. Bull. Exp. Biol. Med. 2000;129(5):491–5.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Keyes, W. R., Peiffer, G. L., Scott, K. C. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr. 1998;67(6):1219–25.CrossRefGoogle ScholarPubMed
Chao, P. Y., Allen, K. G. Glutathione production in copper-deficient isolated rat hepatocytes. Free Radic Biol Med. 1992;12(2):145–50.Google ScholarPubMed
Kim, H., Son, H. Y., Bailey, S. M., Lee, J. Deletion of hepatic Ctr1 reveals its function in copper acquisition and compensatory mechanisms for copper homeostasis. Am J Physiol Gastrointest Liver Physiol. 2009;296(2):G356–G64.CrossRefGoogle ScholarPubMed
Afrin, L. B. Fatal copper deficiency from excessive use of zinc-based denture adhesive. Am Med Sci. 2010;340(2).Google ScholarPubMed
Scott, K. C., Turnlund, J. R. A compartmental model of zinc metabolism in adult men used to study effects of three levels of dietary copper. Am J Physiol. 1994;267(1 Pt 1):E165–E73.Google ScholarPubMed
Tsai, C. Y., Liebig, J. K., Tsigelny, I. F., Howell, S. B. The copper transporter 1 (CTR1) is required to maintain the stability of copper transporter 2 (CTR2). Metallomics. 2015;7(11):1477–87.CrossRefGoogle ScholarPubMed
Bertinato, J., Swist, E., Plouffe, L. J., Brooks, S. P., L'Abbe, M. R. Ctr2 is partially localized to the plasma membrane and stimulates copper uptake in COS-7 cells. Biochem J. 2008;409(3):731–40.CrossRefGoogle Scholar
Hart, E. B., Steenbock, H., Waddell, J., Elvehjem, C. A, With the cooperation of Evelyn Van D, Blanche. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J Biol Chem. 1928;77(2):797833.CrossRefGoogle Scholar
Skidmore, F. M., Drago, V., Foster, P., et al. Aceruloplasminemia with progressive atrophy without brain iron overload: treatment with oral chelation. J Neurol Neurosurg Psychiatry. 2008;79:467–70.CrossRefGoogle Scholar
Videt-Gibou, D., Belliard, S., Bardou-Jacquet, E., et al. Iron excess treatable by copper supplementation in acquired aceruloplasminemia: a new form of secondary human iron overload? Blood. 2009;114(11):2360–1.CrossRefGoogle ScholarPubMed
Klevay, L. M. Iron overload can induce mild copper deficiency. J Trace Elem Med Biol. 2001;14(4):237–40.CrossRefGoogle ScholarPubMed
Delaby, C., Pilard, N., Goncalves, A. S., Beaumont, C., Canonne-Hergaux, F. Presence of the iron exporter ferroportin at the plasma membrane of macrophages is enhanced by iron loading and down-regulated by hepcidin. Blood. 2005;106(12):3979–84.CrossRefGoogle ScholarPubMed
Nemeth, E., Tuttle, M. S., Powelson, J., et al. Hepcidin regulates iron efflux by binding to ferroportin and inducing its internalization. Science. 2004;306:2090–3.CrossRefGoogle ScholarPubMed
Han, O., Kim, E. Y. Colocalization of ferroportin-1 with hephaestin on the basolateral membrane of human intestinal absorptive cells. J Cell Biochem. 2007;101(4):1000–10.CrossRefGoogle ScholarPubMed
Chen, H., Attieh, Z. K., Dang, T., et al. Decreased hephaestin expression and activity leads to decreased iron efflux from differentiated Caco2 cells. J Cell Biochem. 2009;107(4):803–8.CrossRefGoogle ScholarPubMed
Chen, H., Su, T., Attieh, Z. K., et al. Systemic regulation of Hephaestin and Ireg1 revealed in studies of genetic and nutritional iron deficiency. Blood. 2003;102:1893–9.CrossRefGoogle ScholarPubMed
Prohaska, J. R. Impact of copper limitation on expression and function of multicopper oxidases (ferroxidases). Adv Nutr.2011;2(2):8995.CrossRefGoogle ScholarPubMed
De Domenico, I., Ward, D. M., di Patti, M. C., et al. Ferroxidase activity is required for the stability of cell surface ferroportin in cells expressing GPI-ceruloplasmin. EMBO J. 2007;26(12):2823–31.CrossRefGoogle ScholarPubMed
Chen, H., Attieh, Z. K., Syed, B. A., et al. Identification of zyklopen, a new member of the vertebrate multicopper ferroxidase family, and characterization in rodents and human cells. J Nutr. 2010;140(10):1728–35.CrossRefGoogle ScholarPubMed
McArdle, H. J., Gambling, L., Kennedy, C. Iron deficiency during pregnancy: the consequences for placental function and fetal outcome. Proc Nutr Soc. 2014;73(1):915.CrossRefGoogle ScholarPubMed
Harrison, M. D., Jones, C. E., Dameron, C. T. Copper chaperones: function, structure and copper-binding properties. J Biol Inorg Chem. 1999;4(2):145–53.CrossRefGoogle ScholarPubMed
Markossian, K. A., Kurganov, B. I. Copper chaperones, intracellular copper trafficking proteins. Function, structure, and mechanism of action. Biochemistry (Mosc). 2003;68(8):827–37.CrossRefGoogle ScholarPubMed

References

Prohaska, J. R. Biochemical changes in copper deficiency. J Nutr Biochem. 1990 1:452461.CrossRefGoogle ScholarPubMed
Harrison, M. D., Dameron, C. T. Molecular mechanisms of copper metabolism and the role of the Menkes disease protein. J Biochem Mol Toxicol. 1999 13:93106.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Cordano, A., Baertl, J. M., Graham, G. G. Copper deficiency in infancy. Pediatrics 1964 34:324336.CrossRefGoogle ScholarPubMed
United States Environmental Protection Agency Office of Water. Estimated per capita water ingestion in the United States. 2000 EPA-822-R-00-008Google Scholar
What's in your water besides water, that is. 2006. www.myspringwater.com/SpringWaterInformation/MineralContent.aspx (Accessed May 22, 2010).Google Scholar
US Department of Agriculture Agricultural Research Service. Composition of Foods Raw, Processed, Prepared USDA National Nutrient Database for Standard Reference, Release 22. Beltsville, MD. USA, Department of Agriculture. 2009.Google Scholar
Guthrie, B. E., Robinson, M. F. Daily intakes of manganese, copper, zinc, and cadmium by New Zealand women. Brit J Nutr. 1977 38:5563.CrossRefGoogle ScholarPubMed
McKenzie, J. M., Guthrie, B. E., Prior, I. A. M. Zinc and copper status of Polynesian residents in the Tokelau Islands. Am J Clin Nutr. 1978 31:422428.CrossRefGoogle ScholarPubMed
Holden, J. M., Wolf, W. R., Mertz, W. Zinc and copper in self-selected diets. J Am Diet Assoc. 1979 75:2328.CrossRefGoogle ScholarPubMed
Klevay, L. M., Reck, S. J., Barcome, D. F. Evidence of dietary copper and zinc deficiencies. JAMA 1979 241:19161918.CrossRefGoogle ScholarPubMed
Milne, D. B., Schnakenberg, D. D., Johnson, H. L., et al. Trace mineral intake of enlisted military personnel. J Am Diet Assoc. 1980 76:4145.CrossRefGoogle ScholarPubMed
Ma, J., Betts, N. M. Zinc and copper intakes and their major food sources for older adults in the 1994–96 Continuing Survey of Food Intakes by Individuals (CSFII). J Nutr. 2000 130:28382843.CrossRefGoogle ScholarPubMed
Klevay, L. M. Copper gets new status. United States Department of Agriculture Agricultural Research Service News. 2006 www.ars.usda.gove/New/docs.htm?docid=10680&pf=1&cd_id=0 (Accessed May 10, 2010).Google Scholar
National Academy of Sciences, Institute of Medicine, Nutrition Board. Dietary Reference Intakes for Vitamin A, Vitamin E, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. Chapter 7. Copper, pp 224257. National Academies Press, Washington, DC. 2001.Google Scholar
Lönnerdal, B. Concentrations, compartmentation, and bioavailability of trace elements in human milk and infant formula. In: Trace Elements in Children-II. Chandra, RK, ed. Nestlé Nutrition Workshop Series. Vevey/Raven Press, Ltd. New York 1991 23:153166.Google Scholar
Karpel, J. T., Peden, V. H. Copper deficiency in long-term parenteral nutrition. J Pediatr. 1972 80:3236.CrossRefGoogle ScholarPubMed
Fleming, C. R., Hodges, R. E., Hurley, L. S. A prospective study of serum copper and zinc levels in patients receiving total parenteral nutrition. Am J Clin Nutr. 1979 29:7077.CrossRefGoogle Scholar
Department of Foods and Nutrition. American Medical Association, Guidelines for essential trace element preparations for parenteral use. JAMA 1979 241:20502054.Google Scholar
Fleming, C. R. Trace element metabolism in adult patients requiring total parenteral nutrition. Am J Clin Nutr. 1989 49:573579.CrossRefGoogle ScholarPubMed
Fuhrman, M. P., Herrmann, V., Masidonski, P., et al. Pancytopenia after removal of copper from total parenteral nutrition. JPEN J Parenter Enteral Nutr. 2000 24:361366.CrossRefGoogle ScholarPubMed
Hunt, J. R., Vanderpool, R. A. Apparent copper absorption from a vegetarian diet. Am J Clin Nutr. 2001 74:803807.CrossRefGoogle ScholarPubMed
Cartwright, G. E., Wintrobe, M. M. Copper metabolism in normal subjects. Am J Clin Nutr. 1964 14:224232.CrossRefGoogle ScholarPubMed
Lönnerdal, B. Intestinal regulation of copper homeostasis: a developmental perspective. Am J Clin Nutr. 2008 88(suppl):846S850S.CrossRefGoogle ScholarPubMed
Turnland, J. R. Human whole-body copper metabolism. Am J Clin Nutr. 1998 67(suppl):960S964S.CrossRefGoogle Scholar
Vulpe, C., Levinson, B., Whitney, S., et al. Isolation of a candidate gene for Menkes disease and evidence that it encodes a copper-transporting ATPase. Nat Genet. 1993 3:713.CrossRefGoogle ScholarPubMed
Chelly, J., Tumer, Z., Tonnesen, T., et al. Isolation of a candidate gene for Menkes disease that encodes a potential heavy metal binding protein. Nat Genet. 1993 3:1419.CrossRefGoogle ScholarPubMed
Mercer, J. F., Livingston, J., Hall, B, et al. Isolation of a partial candidate gene for Menkes disease by positional cloning. Nat Genet. 1993 3:2025.CrossRefGoogle ScholarPubMed
Camakaris, J., Voskoboinik, I., Mercer, J. F. Molecular mechanisms of copper homeostasis. Biochem Biophys Res Comm. 1999 261:225232.CrossRefGoogle ScholarPubMed
Prohaska, J. Role of copper transporters in copper homeostasis. Am J Clin Nutr. 2008 88(suppl): 826S829S.CrossRefGoogle ScholarPubMed
Turnlund, J. R., Swanson, C. A., King, J. C. Copper absorption and retention in pregnant women fed diets based on animal and plant protein. J Nutr. 1983 113:23462352.CrossRefGoogle Scholar
Turnland, J. R., Keyes, W. R., Anderson, H. L., et al. Copper absorption and retention in young men at three levels of dietary copper by use of the stable isotope 65Cu. Am J Clin Nutr. 1989 49:870878.CrossRefGoogle Scholar
Turnland, J. R., Keyes, W. R., Peiffer, G. L., et al. Copper absorption, excretion, and retention by young men consuming low dietary copper determined by using the stable isotope 65Cu. Am J Clin Nutr. 1998 67:12191225.CrossRefGoogle Scholar
La Fontaine, S., Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch Biochem Biophys. 2007 463:149167.CrossRefGoogle ScholarPubMed
Twomey, P. J., Wierzbicki, A. S., Reynolds, T. M., et al. The copper/ceruloplasmin ratio in routine clinical practice in different laboratories. J Clin Pathol. 2009 62:6063.CrossRefGoogle Scholar
Lönnerdal, B. Copper nutrition during infancy and childhood. Am J Clin Nutr. 1998 67(suppl):1046S1053S.CrossRefGoogle ScholarPubMed
US Department of Health and Human Services, Public Health Service, National Center for Health Statistics. Hematological and nutritional biochemistry reference data for persons 6 month – 74 years of age: United States, 1976–1980 National Health Survey, Series 11, No. 222, DHHS Publication No. (PHS) 831682 Hyattsville, MD, 1982.Google Scholar
Kumar, N., Ahiskog, J. E., Gross, J. B. Acquired hypocupremia after gastric surgery. Clin Gastroenterol Hepatol. 2004 2:10741079.CrossRefGoogle ScholarPubMed
Griffith, D. P., Liff, D. A., Ziegler, T. R., et al. Acquired copper deficiency: a potentially serious and preventable complication following gastric bypass surgery. Obesity 2009 17:827831.CrossRefGoogle ScholarPubMed
Prodan, C. I., Bottomley, S. S., Vincent, A. S., et al. Copper deficiency after gastric surgery: a reason for caution. Am J Med Sci. 2009 337:256258.CrossRefGoogle ScholarPubMed
Prasad, A. S., Brewer, C. J., Schoomaker, E. B., et al. Hypocupremia induced by zinc therapy in adults. JAMA 1978 240:21662168.CrossRefGoogle ScholarPubMed
Brewer, G. J., Dick, R. D., Johnson, V. D., et al. Treatment of Wilson's disease with zinc: XV long-term follow-up studies. J Lab Clin Med. 1998 132:264278.CrossRefGoogle ScholarPubMed
Willis, M. S., Monaghan, S. A., Miller, M. L., et al. Zinc-induced copper deficiency. Am J Clin Pathol. 2005 123:125131.CrossRefGoogle ScholarPubMed
Nations, S. P., Boyer, P. J., Love, L. A., et al. Denture cream: an unusual source of excess zinc, leading to hypocupremia and neurologic disease. Neurology 2008 71:634639.CrossRefGoogle ScholarPubMed
Hedera, P., Fink, J. K., Bockenstadt, , et al. Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown source: further support for existence of a new zinc overload syndrome. Arch Neurol. 2003 60:13031306.CrossRefGoogle ScholarPubMed
Hedera, P., Peltier, A., Fink, J. K., et al. Myelopolyneuropathy and pancytopenia due to copper deficiency and high zinc levels of unknown origin II. The denture cream is a primary source of zinc. NeuroToxicology 2009 30:996999.CrossRefGoogle ScholarPubMed
Hassan, H. A., Netchvolodoff, C., Raufman, J. P. Zinc-induced copper deficiency in a coin swallower. Am J Gastroenterol. 2000 95:29752977.CrossRefGoogle Scholar
Williams, D. M. Copper deficiency in humans. Semin Hematol. 1983 20:118128.Google ScholarPubMed
Koca, E., Buyukasik, Y., Cetiner, D., et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res. 2008 32:495499.CrossRefGoogle ScholarPubMed
Halfdanarson, T. R., Kumar, N., Hogan, W. J., et al. Copper deficiency in celiac disease. J Clin Gastroenterol. 2009 43:162164.CrossRefGoogle ScholarPubMed
Cunningham, J. J., Lydon, M. K., Emerson, R., et al. Low ceruloplasmin levels during recovery from major burn injury: influence of open wound size and copper supplementation. Nutrition 1996 12:8388.CrossRefGoogle ScholarPubMed
Dunlap, W. M., James, G. W. III, Hume, D. M. Anemia and neutropenia caused by copper deficiency. Ann Int Med. 1974 80:470476.Google ScholarPubMed
Halfdanarson, T. R., Kumar, N., Li, C. Y., et al. Hematological manifestations of copper deficiency: a retrospective review. Eur J Haematol. 2008 80:523531.CrossRefGoogle ScholarPubMed
Hart, E. B., Steenbock, H., Waddell, J, et al. Iron in nutrition. VII. Copper as a supplement to iron for hemoglobin building in the rat. J Biol Chem. 1928; 77:797812.CrossRefGoogle Scholar
Cartwright, G. E., Wintrobe, M. M. The question of copper deficiency in man. Am J Clin Nutr. 1964 15:94110.CrossRefGoogle ScholarPubMed
Lee, G. R., Nacht, S., Lukens, J. N., et al. Iron metabolism in copper deficient swine. J Clin Invest. 1969 47:20582069.CrossRefGoogle Scholar
Roeser, H. P., Lee, G. R., Nacht, S., et al. The role of ceruloplasmin in iron metabolism. J Clin Invest. 1970 49:24082417.CrossRefGoogle ScholarPubMed
Sutton, L., Vasirikala, M., Chen, W. Hematogone hyperplasia in copper deficiency. Am J Clin Pathol. 2009 132:191199.CrossRefGoogle ScholarPubMed
Gregg, X. T., Reddy, V., Prchal, J. T. Copper deficiency masquerading as myelodysplastic syndrome. Blood 2002 100:14931495.CrossRefGoogle ScholarPubMed
Underwood, E. J. Trace Elements in Human and Animal Nutrition, 2nd edition. New York. Academic Press, Inc. 1962.Google Scholar
Schleper, B., Stuerenburg, H. J. Copper deficiency-associated myelopathy in a 46-year-old woman. J Neurol. 2001 248:705706.CrossRefGoogle ScholarPubMed
Prodan, C. I., Holland, N. R., Wisdom, P. J., et al. CNS demyelination associated with copper deficiency and hyperzincemia. Neurology 2002 59:14531456.CrossRefGoogle ScholarPubMed
Kumar, N., Gross, J. B. Jr., Ahlskog, J. E. Copper deficiency myelopathy produces a clinical picture like subacute combined degeneration. Neurology 2004 63:3339.CrossRefGoogle ScholarPubMed
Bolamperti, L., Leone, M. A., Stecco, A., et al. Myeloneuropathy due to copper deficiency: clinical and MRI findings after copper supplementation. Neurol Sci. 2009 30:521524.CrossRefGoogle ScholarPubMed
Mitteregger, G., Korte, S., Shakarami, M., et al. Role of copper and manganese in prion disease progression. Brain Res. 2009 1292:155164.CrossRefGoogle ScholarPubMed
Hoyle, G. S., Schwartz, R. P., Auringer, S. T. Pseudoscurvy caused by copper deficiency. J Pediatr. 1999 134:379.CrossRefGoogle ScholarPubMed
Bonham, M., O'Connor, J. M., Hannigan, B. M., et al. The immune system as a physiological indicator of marginal copper status? Brit J Nutr. 2002 87:393403.CrossRefGoogle ScholarPubMed
Muños, C., Rios, E., Olivos, J., et al. Iron, copper, and immunocompetence. Brit J Nutr. 2007 98(suppl 1): S24S28.CrossRefGoogle Scholar
Sudhakar, K., Fay, P. J. Effects of copper on the structure and function of factor VIII subunits: evidence for an auxiliary role for copper ions in cofactor activity. Biochemistry 1998 37: 68746882.CrossRefGoogle ScholarPubMed
Fuentes-Prior, P., Fujikawa, K., Pratt, K. P. New insights into binding interfaces of coagulation factors V and VIII and their homologues – lessons from high resolution crystal structures. Curr Prot Pept Sci. 2002 3:313339.CrossRefGoogle ScholarPubMed
Milne, D. B., Nilsen, F. H. Effects of a diet low in copper on copper-status indicators in postmenopausal women. Am J Clin Nutr. 1996 63: 358364.CrossRefGoogle ScholarPubMed
Shields, G. S., Coulson, W. F., Kimball, D. A., et al. Studies on copper metabolism. XXXII. Cardiovascular lesions in copper deficient swine. Am J Pathol. 1962 41:603621.Google Scholar
Saari, J. T., Schuschke, D. A. Cardiovascular effects of dietary copper deficiency. BioFactors 1999 10:359375.CrossRefGoogle ScholarPubMed
Danks, D. M., Campbell, P. E., Stevens, B. J., et al. Menkes's kinky hair syndrome: an inherited defect in copper absorption with widespread effects. Pediatrics 1972 50:188201.CrossRefGoogle ScholarPubMed
Nelson, S. K., Huang, C.-J., Mathias, M. M., et al. Copper-marginal and copper deficient diets decrease aortic prostacyclin production and copper-dependent superoxide dismutase activity, and increase aortic lipid peroxidation in rats. J Nutr. 1992 122:21012108.CrossRefGoogle ScholarPubMed
Klevay, L. M. Cardiovascular disease from copper deficiency – a history. J Nutr. 2000 130:489S492S.CrossRefGoogle ScholarPubMed

References

Holick, M. F. Vitamin D deficiency. NEJM 2007; 357: 266–81.CrossRefGoogle ScholarPubMed
Hewison, M. An update on vitamin D and human immunity. Clin Endocrinol (Oxf) 2012; 76: 315–25.CrossRefGoogle ScholarPubMed
Perlstein, T. S., Pande, R., Berliner, N., Vanasse, G. J. Prevalence of 25-hydroxyvitamin D deficiency in subgroups of elderly persons with anemia: association with anemia of inflammation. Blood 2011; 117: 2800–6.CrossRefGoogle ScholarPubMed
Smith, E. M., Alvarez, J. A., Martin, G. S., et al. Vitamin D deficiency is associated with anaemia among African Americans in a US cohort. Br J Nutr 2015; 113: 1732–40.CrossRefGoogle Scholar
Christakos, S., Dhawan, P., Verstuyf, A., et al. Vitamin D: metabolism, molecular mechanism of action, and pleiotropic effects. Physiol Rev 2016; 96: 365408.CrossRefGoogle ScholarPubMed
Jones, G. Pharmacokinetics of vitamin D toxicity. Am J Clin Nutr 2008; 88: 582S–6S.CrossRefGoogle ScholarPubMed
Wacker, M., Holick, M. F. Vitamin D – Effects on skeletal and extraskeletal health and the need for supplementation. Nutrients 2013; 5: 111–48.CrossRefGoogle ScholarPubMed
Institute of Medicine Committee to Review Dietary Reference Intakes for Vitamin D, Calcium. The National Academies Collection: Reports funded by National Institutes of Health. In: Ross, AC, Taylor, CL, Yaktine, AL, Del Valle, HB., eds. Dietary Reference Intakes for Calcium and Vitamin D. Washington (DC): National Academies Press (US). National Academy of Sciences. 2011.Google ScholarPubMed
Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., et al. Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society Clinical Practice Guideline. J Clin Endocrinol Metab 2011; 96: 1911–30.CrossRefGoogle ScholarPubMed
Ganji, V., Zhang, X., Tangpricha, V. Serum 25-hydroxyvitamin D concentrations and prevalence estimates of hypovitaminosis D in the U.S. population based on assay-adjusted data. J Nutr 2012; 142: 498507.CrossRefGoogle ScholarPubMed
Smith, E. M., Tangpricha, V. Vitamin D and anemia: insights into an emerging association. Curr Opin Endocrinol Diabetes Obes 2015; 22: 432–8.CrossRefGoogle ScholarPubMed
Liu, T., Zhong, S., Liu, L., et al. Vitamin D deficiency and the risk of anemia: a meta-analysis of observational studies. Ren Fail 2015; 37: 929–34.CrossRefGoogle ScholarPubMed
Kendrick, J., Targher, G., Smits, G., Chonchol, M. 25-Hydroxyvitamin D deficiency and inflammation and their association with hemoglobin levels in chronic kidney disease. Am J Nephrol 2009; 30: 6472.CrossRefGoogle ScholarPubMed
Patel, N. M., Gutierrez, O. M., Andress, D. L., et al. Vitamin D deficiency and anemia in early chronic kidney disease. Kidney Int 2010; 77: 715–20.CrossRefGoogle ScholarPubMed
Zittermann, A., Jungvogel, A., Prokop, S., et al. Vitamin D deficiency is an independent predictor of anemia in end-stage heart failure. Clin Res Cardiol 2011; 100: 781–8.CrossRefGoogle ScholarPubMed
Atkinson, M. A., Melamed, M. L., Kumar, J., et al. Vitamin D, race, and risk for anemia in children. J Pediatr 2014; 164: 153–8 e1.CrossRefGoogle ScholarPubMed
Sim, J. J., Lac, P. T., Liu, I. L., et al. Vitamin D deficiency and anemia: a cross-sectional study. Ann Hematol 2010; 89: 447–52.CrossRefGoogle ScholarPubMed
Thomas, C. E., Guillet, R., Queenan, R. A., et al. Vitamin D status is inversely associated with anemia and serum erythropoietin during pregnancy. Am J Clin Nutr 2015; 102: 1088–95.CrossRefGoogle ScholarPubMed
Nemeth, E., Ganz, T. Anemia of inflammation. Hematol Oncol Clin North Am 2014; 28: 671–81, vi.CrossRefGoogle ScholarPubMed
Weiss, G., Goodnough, L. T. Anemia of chronic disease. NEJM 2005; 352: 1011–23.CrossRefGoogle ScholarPubMed
Zughaier, S. M., Alvarez, J. A., Sloan, J. H., et al. The role of vitamin D in regulating the iron-hepcidin-ferroportin axis in monocytes. J Clin Transl Endocrinol 2014; 1: 1925.Google ScholarPubMed
Bacchetta, J., Zaritsky, J. J., Sea, J. L., et al. Suppression of iron-regulatory hepcidin by vitamin D. J Am Soc Nephrol 2014; 25: 564–72.CrossRefGoogle ScholarPubMed
Alon, D. B., Chaimovitz, C., Dvilansky, A., et al. Novel role of 1,25(OH)(2)D(3) in induction of erythroid progenitor cell proliferation. Exp Hematol 2002; 30: 403–9.CrossRefGoogle Scholar
Aucella, F., Scalzulli, R. P., Gatta, G., et al. Calcitriol increases burst-forming unit-erythroid proliferation in chronic renal failure. A synergistic effect with r-HuEpo. Nephron Clin Pract 2003; 95: c121–7.Google ScholarPubMed
Afsar, B., Agca, E., Turk, S. Comparison of erythropoietin resistance in hemodialysis patients using calcitriol, cinacalcet, or paricalcitol. J Clin Pharmacol 2015; 55: 1280–5.CrossRefGoogle ScholarPubMed
Kiss, Z., Ambrus, C., Almasi, C., et al. Serum 25(OH)-cholecalciferol concentration is associated with hemoglobin level and erythropoietin resistance in patients on maintenance hemodialysis. Nephron Clin Pract 2011; 117: c373–8.Google ScholarPubMed
Kumar, V. A., Kujubu, D. A., Sim, J. J., et al. Vitamin D supplementation and recombinant human erythropoietin utilization in vitamin D-deficient hemodialysis patients. J Nephrol 2011; 24: 98105.CrossRefGoogle ScholarPubMed
Rianthavorn, P., Boonyapapong, P. Ergocalciferol decreases erythropoietin resistance in children with chronic kidney disease stage 5. Pediatr Nephrol 2013; 28: 1261–6.CrossRefGoogle ScholarPubMed
Miskulin, D. C., Majchrzak, K., Tighiouart, H., et al. Ergocalciferol supplementation in hemodialysis patients with vitamin D deficiency: a randomized clinical trial. J Am Soc Nephrol 2015.Google ScholarPubMed
Albitar, S., Genin, R., Fen-Chong, M., et al. High-dose alfacalcidol improves anaemia in patients on haemodialysis. Nephrol Dial Transplant 1997; 12: 514–8.CrossRefGoogle ScholarPubMed
Goicoechea, M., Vazquez, M. I., Ruiz, M. A., et al. Intravenous calcitriol improves anaemia and reduces the need for erythropoietin in haemodialysis patients. Nephron 1998; 78: 23–7.CrossRefGoogle ScholarPubMed
Lin, C. L., Hung, C. C., Yang, C. T., Huang, C. C. Improved anemia and reduced erythropoietin need by medical or surgical intervention of secondary hyperparathyroidism in hemodialysis patients. Ren Fail 2004; 26: 289–95.CrossRefGoogle ScholarPubMed
Riccio, E., Sabbatini, M., Bruzzese, D., et al. Effect of paricalcitol vs calcitriol on hemoglobin levels in chronic kidney disease patients: a randomized trial. PloS One 2015; 10: e0118174.CrossRefGoogle ScholarPubMed
Sooragonda, B., Bhadada, S. K., Shah, V. N., et al. Effect of vitamin D replacement on hemoglobin concentration in subjects with concurrent iron-deficiency anemia and vitamin D deficiency: a randomized, single-blinded, placebo-controlled trial. Acta Haematol 2015; 133: 31–5.CrossRefGoogle ScholarPubMed
Ernst, J. B., Tomaschitz, A., Grubler, M. R., et al. Vitamin D supplementation and hemoglobin levels in hypertensive patients: a randomized controlled trial. Int J Endocrinol 2016; 2016: 6836402.CrossRefGoogle ScholarPubMed
Ish-Shalom, S., Segal, E., Salganik, T., et al. Comparison of daily, weekly, and monthly vitamin D3 in ethanol dosing protocols for two months in elderly hip fracture patients. J Clin Endocrinol Metab 2008; 93: 3430–5.CrossRefGoogle ScholarPubMed
Kearns, M. D., Alvarez, J. A., Tangpricha, V. Large, single-dose, oral vitamin D supplementation in adult populations: a systematic review. Endocr Pract 2014; 20: 341–51.CrossRefGoogle ScholarPubMed
Pepper, K. J., Judd, S. E., Nanes, M. S., Tangpricha, V. Evaluation of vitamin D repletion regimens to correct vitamin D status in adults. Endocr Pract 2009; 15: 95103.CrossRefGoogle ScholarPubMed
Tripkovic, L., Lambert, H., Hart, K., et al. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. Am J Clin Nutr 2012; 95: 1357–64.CrossRefGoogle ScholarPubMed
Thomas, R., Kanso, A., Sedor, J. R. Chronic kidney disease and its complications. Prim Care 2008; 35: 329–44, vii.CrossRefGoogle ScholarPubMed
Atkinson, M. A., Kim, J. Y., Roy, C. N., et al. Hepcidin and risk of anemia in CKD: a cross-sectional and longitudinal analysis in the CKiD cohort. Pediatr Nephrol 2015; 30: 635–43.CrossRefGoogle ScholarPubMed
Pasricha, S. R., Atkinson, S. H., Armitage, A. E., et al. Expression of the iron hormone hepcidin distinguishes different types of anemia in African children. Sci Transl Med 2014; 6: 235re3.CrossRefGoogle ScholarPubMed
Moretti, D., Goede, J. S., Zeder, C., et al. Oral iron supplements increase hepcidin and decrease iron absorption from daily or twice-daily doses in iron-depleted young women. Blood 2015; 126: 1981–9.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×