Book contents
- Frontmatter
- Contents
- In Lieu of Birthday Greetings
- Peter Swinnerton-Dyer's mathematical papers to date
- On the Hasse principle for bielliptic surfaces
- Effective Diophantine approximation on Gm
- A Diophantine system
- Valeurs d'un polynôme à une variable représentées par une norme
- Constructing elements in Shafarevich–Tate groups of modular motives
- A counterexample to a conjecture of Selmer
- Linear relations amongst sums of two squares
- Kronecker double series and the dilogarithm
- On Shafarevich–Tate groups and the arithmetic of Fermat curves
- Cascades of projections from log del Pezzo surfaces
- On obstructions to the Hasse principle
- Abelian surfaces with odd bilevel structure
Peter Swinnerton-Dyer's mathematical papers to date
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- In Lieu of Birthday Greetings
- Peter Swinnerton-Dyer's mathematical papers to date
- On the Hasse principle for bielliptic surfaces
- Effective Diophantine approximation on Gm
- A Diophantine system
- Valeurs d'un polynôme à une variable représentées par une norme
- Constructing elements in Shafarevich–Tate groups of modular motives
- A counterexample to a conjecture of Selmer
- Linear relations amongst sums of two squares
- Kronecker double series and the dilogarithm
- On Shafarevich–Tate groups and the arithmetic of Fermat curves
- Cascades of projections from log del Pezzo surfaces
- On obstructions to the Hasse principle
- Abelian surfaces with odd bilevel structure
Summary
[1] P. S. Dyer, A solution of A4 + B4 = C4 + D4, J. London Math. Soc. 18 (1943) 2–4
[2] H. P. F. Swinnerton-Dyer, On a conjecture of Hardy and Littlewood, J. London Math. Soc. 27 (1952) 16–21
[3] H. P. F. Swinnerton-Dyer, A solution of A5 + B5 + C5 = D5 + E5 + F5, Proc. Cambridge Phil. Soc. 48 (1952) 516–518
[4] H. P. F. Swinnerton-Dyer, Extremal lattices of convex bodies, Proc. Cambridge Phil. Soc. 49 (1953) 161–162
[5] E. S. Barnes and H. P. F. Swinnerton-Dyer, The inhomogeneous minima of binary quadratic forms. I, Acta Math. 87 (1952) 259–323. II, same J. 88 (1952) 279–316. III, same J. 92 (1954) 199–234
[6] H. P. F. Swinnerton-Dyer, Inhomogeneous lattices, Proc. Cambridge Phil. Soc. 50 (1954) 20–25
[7] A. O. L. Atkin and P. Swinnerton-Dyer, Some properties of partitions, Proc. London Math. Soc. (3) 4 (1954) 84–106
[8] J. W. S. Cassels and H. P. F. Swinnerton-Dyer, On the product of three homogeneous linear forms and the indefinite ternary quadratic forms, Phil. Trans. Roy. Soc. London. Ser. A. 248 (1955) 73–96
[9] H. Davenport and H. P. F. Swinnerton-Dyer, Products of inhomogeneous linear forms, Proc. London Math. Soc. (3) 5 (1955) 474–499
[10] B. J. Birch and H. P. F. Swinnerton-Dyer, On the inhomogeneous minimum of the product of n linear forms, Mathematika 3 (1956) 25–39
- Type
- Chapter
- Information
- Number Theory and Algebraic Geometry , pp. 23 - 30Publisher: Cambridge University PressPrint publication year: 2004