Book contents
- Frontmatter
- Contents
- In Lieu of Birthday Greetings
- Peter Swinnerton-Dyer's mathematical papers to date
- On the Hasse principle for bielliptic surfaces
- Effective Diophantine approximation on Gm
- A Diophantine system
- Valeurs d'un polynôme à une variable représentées par une norme
- Constructing elements in Shafarevich–Tate groups of modular motives
- A counterexample to a conjecture of Selmer
- Linear relations amongst sums of two squares
- Kronecker double series and the dilogarithm
- On Shafarevich–Tate groups and the arithmetic of Fermat curves
- Cascades of projections from log del Pezzo surfaces
- On obstructions to the Hasse principle
- Abelian surfaces with odd bilevel structure
Effective Diophantine approximation on Gm
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- In Lieu of Birthday Greetings
- Peter Swinnerton-Dyer's mathematical papers to date
- On the Hasse principle for bielliptic surfaces
- Effective Diophantine approximation on Gm
- A Diophantine system
- Valeurs d'un polynôme à une variable représentées par une norme
- Constructing elements in Shafarevich–Tate groups of modular motives
- A counterexample to a conjecture of Selmer
- Linear relations amongst sums of two squares
- Kronecker double series and the dilogarithm
- On Shafarevich–Tate groups and the arithmetic of Fermat curves
- Cascades of projections from log del Pezzo surfaces
- On obstructions to the Hasse principle
- Abelian surfaces with odd bilevel structure
Summary
Introduction
Effective results in the diophantine approximation of algebraic numbers are difficult to obtain, and for a long time the only general method available was Baker's theory of linear forms in logarithms. An alternative, more algebraic, method was later proposed in Bombieri and Bombieri and Cohen. This new method is quite different from the classical approach through the theory of linear forms in logarithms.
In this paper, we improve on results derived in. These results concern effective approximations to roots of high order of algebraic numbers and their application to diophantine approximation in a number field by a finitely generated multiplicative subgroup. We restrict our attention to the nonarchimedean case, although our results and methods should go over mutatis mutandis to the archimedean setting.
We do not claim that our theorems are the best that are known in this direction. Linear forms in two logarithms (which are easier to treat than the general case) suffice to prove somewhat better results than our Theorem 5.1, see Bugeaud and Bugeaud and Laurent; we give an explicit comparison in §5, Remark 5.1.
Theorem 5.2, which is useful for general applications, follows from Theorem 5.1 by means of a trick introduced for the first time in and improved in. Thus any improved form of Theorem 5.1 carries automatically an improvement of Theorem 5.2.
- Type
- Chapter
- Information
- Number Theory and Algebraic Geometry , pp. 41 - 62Publisher: Cambridge University PressPrint publication year: 2004