from Part I - Basic aspects of neurodegeneration
Published online by Cambridge University Press: 04 August 2010
Introduction
In the central nervous system (CNS) of mammals, glutamate acts as a chemical transmitter of excitatory signals by binding to different glutamate receptors and activating a multitude of highly integrated molecular pathways. Termination of this excitatory neurotransmission occurs via re-uptake of glutamate by specialized high affinity transporters capable of maintaining glutamate at ∼1 μM levels in the synaptic cleft. At higher concentrations, glutamate can also act as neurotoxin causing degeneration and death of neurons (Choi, 1992). This event is known as excitotoxicity and contributes to many chronic and acute neurodegenerative diseases. Therefore, glutamate homeostasis and the regulation of glutamate transporter abundance and function are a key element for the normal brain function.
High affinity, Na+-dependent glutamate transporters: localization, functional properties and topology
Molecular cloning has identified five different subtypes of Na+-dependent glutamate transporters, termed EAAT1–5 (excitatory amino acid transporters 1–5; nomenclature used for human subtypes). At present, two different nomenclatures are in use in the literature to indicate human and rodent isoforms (Table 5.1). However, the homologues show a high degree of interspecies conservation (>95%) and do not differ functionally. The gene names for the human transporter are as follows: EAAT3 or SLC1A1; EAAT2 or SLC1A2; EAAT1 or SLC1A3; EAAT4 or SLC1A4; EAAT5 or SLC1A5. The acronym SLC1 refers to ‘Solute Carrier family’ number 1 and A1 to family member number 1.
Localization
Immunohistochemistry studies revealed that the glutamate transporters EAAT1 and EAAT2 are localized to astroglial membranes that immediately oppose synaptic cleft regions of the neuropil.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.