Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-03T08:39:27.428Z Has data issue: false hasContentIssue false

39 - Nutrition in the neonatal surgical patient

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Agostino Pierro
Affiliation:
Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK
Simon Eaton
Affiliation:
Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

The newborn infant is in a “critical epoch” of development not only for the organism as a whole but also for the individual organs and most significantly for the brain. Adequate nutrition in the neonatal period is necessary to avoid the adverse effects of malnutrition on morbidity and mortality and to minimise the future menace of stunted mental and physical development.

The survival rate of newborn infants affected by isolated congenital gastrointestinal abnormalities has improved considerably over the past 20 years and is now in excess of 90% in most pediatric surgical centers. The introduction of parenteral nutrition and advancement in nutritional management are certainly among the main factors responsible for this improvement.

Historical background

Parenteral nutrition stepped forward from numerous historical anecdotes in the 1930s with the first successful infusion of protein hydrolysates in humans, followed by the first report of successful total parenteral nutrition in an infant in 1944, and given a huge boost by the first placement of a catheter in the superior vena cava to deliver nutrients for prolonged periods. Using this system, Dudrick and Wilmore showed that adequate growth and development could be achieved in beagle puppies and in a surgical infant. Following these initial reports Filler and co-authors reported the first series of surgical neonates with gastrointestinal abnormalities treated with long-term total parenteral nutrition.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Swyer, P. R., Heim, T. F. Nutrition, body fluids, and acid-base homeostasis. In Fanaroff, A. A., Martin, R. J., eds. Neonatal–perinatal Medicine. St. Louis, MO; 1987:445–60.Google Scholar
Coran, A. G. Nutrition of the surgical patient. In Welch, K. J., Randolph, J. G., Reed, D. J., eds. Pediatric Surgery. Chicago, IL; 1986:96–108.Google Scholar
Elman, R.Amino acid content of blood following intravenous injection of hydrolyzed casein. Proc. Soc. Exp. Biol. Med. 2937;37:437.
Helfrick, F. W., Abelson, N. M.Intravenous feeding of a complete diet in a child: report of a case. J. Parenter. Enteral Nutr. 1978;2:688–9.CrossRefGoogle Scholar
Dudrick, S. J., Wilmore, D. W., Vars, H. M., Rhoads, J. E.Long-term total parenteral nutrition with growth, development, and positive nitrogen balance. Surgery 1968;64:134–42.Google ScholarPubMed
Filler, R. M., Eraklis, A. J., Rubin, V. G., Das, J. B.Long-term total parenteral nutrition in infants. New Engl. J. Med. 1969;281:589–94.CrossRefGoogle ScholarPubMed
Teitelbaum, D. H., Coran, A. G.Perioperative nutritional support in pediatrics. Nutrition 1998;14:130–42.CrossRefGoogle Scholar
Pierro, A., Carnielli, V., Filler, R. M.et al.. Partition of energy metabolism in the surgical newborn. J. Pediatr. Surg. 1991;26:581–6.CrossRefGoogle ScholarPubMed
Freymond, D., Schutz, Y., Decombaz, J., Micheli, J. L., Jequier, E.Energy-balance, physical-activity, and thermogenic effect of feeding in premature-infants. Pediatr Res. 1986;20:638–45.CrossRefGoogle ScholarPubMed
ESPGAN Committee on Nutrition. Nutrition and feeding of preterm infants. Acta Paediatr. Scand. 1987;Suppl. 386.
Cunningham, J. J.Body composition as a determinant of energy expenditure: a synthetic review and a proposed general prediction equation. Am. J. Clin. Nutr. 1991;54:963–9.CrossRefGoogle Scholar
Pierro, A., Jones, M. O., Hammond, P., Donnell, S. C., Lloyd, D. A.A new equation to predict the resting energy expenditure of surgical infants. J. Pediatr. Surg. 1994;29:1103–8.CrossRefGoogle ScholarPubMed
Hill, A. G., Hill, G. L.Metabolic response to severe injury. Br. J. Surg. 1998;85:884–90.CrossRefGoogle ScholarPubMed
Jones, M. O., Pierro, A., Hammond, P., Lloyd, D. A.The metabolic response to operative stress in infants. J. Pediatr. Surg. 1993a;28:1258–62.CrossRefGoogle Scholar
Shanbhogue, R. L. K., Lloyd, D. A.Absence of hypermetabolism after operation in the newborn-infant. J. Parenter. Enteral Nutr. 1992;16:333–6.CrossRefGoogle ScholarPubMed
Anand, K. J., Sippell, W. G., Aynsley-Green, A.Randomised trial of fentanyl anaesthesia in preterm babies undergoing surgery: effects on the stress response. Lancet 1987;1:62–6.CrossRefGoogle ScholarPubMed
Chwals, W. J., Letton, R. W., Jamie, A., Charles, B.Stratification of injury severity using energy-expenditure response in surgical infants. J. Pediatr. Surg. 1995;30:1161–4.CrossRefGoogle ScholarPubMed
Anand, K. J., Hickey, P. R.Halothane-morphine compared with high-dose sufentanil for anesthesia and postoperative analgesia in neonatal cardiac surgery. New Engl. J. Med. 1992;326:1–9.CrossRefGoogle ScholarPubMed
Facchinetti, F., Bagnoli, F., Bracci, R., Genazzani, A. R.Plasma opioids in the first hours of life. Pediatr. Res. 1982;16:95–8.CrossRefGoogle Scholar
Harrison, R. A., Lewin, M. R., Halliday, D., Clark, C. G.Leucine kinetics in surgical patients. II: A study of the effect of malignant disease and tumour burden. Br. J. Surg. 1989;76:509–11.CrossRefGoogle ScholarPubMed
Carli, F., Webster, J., Pearson, M.et al.Postoperative protein metabolism: effect of nursing elderly patients for 24 h after abdominal surgery in a thermoneutral environment. Br. J. Anaesth. 1991;66:292–9.CrossRefGoogle Scholar
Essen, P., McNurlan, M. A., Wernerman, J., Vinnars, E., Garlick, P. J.Uncomplicated surgery, but not general anesthesia, decreases muscle protein synthesis. Am. J. Physiol. 1992;262:E253–60.Google Scholar
Powis, M. R., Smith, K., Rennie, M., Halliday, D., Pierro, A.Effect of major abdominal operations on energy and protein metabolism in infants and children. J. Pediatr. Surg. 1998;33:49–53.CrossRefGoogle ScholarPubMed
Powis, M. R., Smith, K., Rennie, M., Halliday, D., Pierro, A.Characteristics of protein and energy metabolism in neonates with necrotizing enterocolitis – a pilot study. J. Pediatr. Surg. 1999;34:5–10.CrossRefGoogle ScholarPubMed
Groner, J. I., Brown, M. F., Stallings, V. A., Ziegler, M. M., O'Neill-Ja, J.Resting energy expenditure in children following major operative procedures. J. Pediatr. Surg. 1989;24:825–7.CrossRefGoogle ScholarPubMed
Keshen, T. H., Miller, R. G., Jahoor, F., Jaksic, T.Stable isotopic quantitation of protein metabolism and energy expenditure in neonates on- and post-extracorporeal life support. J. Pediatr. Surg. 1997;32:958–62.CrossRefGoogle ScholarPubMed
Vlessis, A., Goldman, R., Trunkey, D.New concepts in the pathophysiology of oxygen-metabolism during sepsis. Br. J. Surg. 1995;82:870–6.CrossRefGoogle ScholarPubMed
Plank, L. D., Connolly, A. B., Hill, G. L.Sequential changes in the metabolic response in severely septic patients during the first 23 days after the onset of peritonitis. Ann. Surg. 1998;228:146–58.CrossRefGoogle ScholarPubMed
Takala, J., Pitkanen, O. Nutrition support in trauma and sepsis. In Payne-James, J., Grimble, G., Silk, D., eds. Artificial Nutrition in Support in Clinical Practice. London: Edward Arnold; 1995:403–13.Google Scholar
Wolfe, R. R., Herndon, D. N., Jahoor, F., Miyoshi, H., Wolfe, M.Effect of severe burn injury on substrate cycling by glucose and fatty-acids. New Engl. J. Med. 1987;317:403–8.CrossRefGoogle ScholarPubMed
Giovannini, I., Boldrini, G., Castagneto, M.et al.Respiratory quotient and patterns of substrate utilization in human sepsis and trauma. J. Parenter. Enteral Nutr. 1983;7:226–30.CrossRefGoogle ScholarPubMed
Samra, J. S., Summers, L. K. M., Frayn, K. N.Sepsis and fat metabolism. Br. J. Surg. 1996;83:1186–96.CrossRefGoogle ScholarPubMed
Tilden, S. J., Watkins, S., Tong, T. K., Jeevanandam, M.Measured energy-expenditure in pediatric intensive-care patients. Am. J. Dis. Child. 1989;143:490–2.Google ScholarPubMed
Phillips, R., Ott, L., Young, B., Walsh, J.Nutritional support and measured energy expenditure of the child and adolescent with head injury. J. Neurosurg. 1987;67:846–51.CrossRefGoogle Scholar
White, M. S., Shepherd, R. W., McEniery, J. A.Energy expenditure in 100 ventilated, critically ill children: improving the accuracy of predictive equations. Crit. Care Med. 2000;28:2307–12.CrossRefGoogle ScholarPubMed
Briassoulis, G., Venkataraman, S., Thompson, A. E.Energy expenditure in critically ill children. Crit. Care Med. 2000;28:1166–72.CrossRefGoogle ScholarPubMed
Chwals, W. J., Lally, K. P., Woolley, M. M., Mahour, G. H.Measured energy expenditure in critically ill infants and young children. J. Surg. Res. 1988;44:467–72.CrossRefGoogle ScholarPubMed
Jaksic, T., Shew, S. B., Keshen, T. H., Dzakovic, A., Jahoor, F.Do critically ill surgical neonates have increased energy expenditure?J. Pediatr. Surg. 2001;36:63–7.CrossRefGoogle ScholarPubMed
Coss-Bu, J. A., Klish, W. J., Walding, D.et al.. Energy metabolism, nitrogen balance, and substrate utilization in critically ill children. Am. J. Clin. Nutr. 2001;74:664–9.CrossRefGoogle ScholarPubMed
Turi, R. A., Petros, A., Eaton, S.et al.Energy metabolism of infants and children with systemic inflammatory response syndrome and sepsis. Ann. Surg. 2001;233:581–7.CrossRefGoogle ScholarPubMed
Taylor, R. M., Cheeseman, P., Preedy, V. R., Baker, A. J., Grimble, G. K.Can energy expenditure be predicted in critically ill children?Pediatr. Crit. Care Med. 2003;4:176–80.CrossRefGoogle ScholarPubMed
Kerner, J. A. Carbohydrate requirements. In Kerner, J. A., ed. Manual of Pediatric Parenteral Nutrition. New York, NY: John Wiley & Sons; 1983:79–88.Google Scholar
Stein, T. P.Why measure the respiratory quotient of patients on total parenteral nutrition?J. Am. Coll. Nutr. 1985;4:501–13.CrossRefGoogle ScholarPubMed
Askanazi, J., Nordenstrom, J., Rosenbaum, S. H.et al.Nutrition for the patient with respiratory failure: glucose vs. fat. Anesthesiology 1981;54:373–7.CrossRefGoogle ScholarPubMed
Cooke, R. J., Yeh, Y. Y., Gibson, D., Debo, D., Bell, G. L.Soybean oil emulsion administration during parenteral nutrition in the preterm infant: effect on essential fatty acid, lipid, and glucose metabolism. J. Pediatr. 1987;111:767–73.CrossRefGoogle ScholarPubMed
Gutcher, G. R., Farrell, P. M.Intravenous infusion of lipid for the prevention of essential fatty acid deficiency in premature infants. Am. J. Clin. Nutr. 1991;54:1024–8.CrossRefGoogle ScholarPubMed
Borresen, H. C., Coran, A. G., Knutrud, O.Metabolic results of parenteral feeding in neonatal surgery: a balanced parenteral feeding program based on a synthetic l-amino acid solution and a commercial fat emulsion. Ann. Surg. 1970;172:291–301.CrossRefGoogle Scholar
Nordenstrom, J., Carpentier, Y. A., Askanazi, J.et al.Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann. Surg. 1982;196:221–31.CrossRefGoogle ScholarPubMed
Nose, O., Tipton, J. R., Ament, M. E., Yabuuchi, H.Effect of the energy source on changes in energy expenditure, respiratory quotient, and nitrogen balance during total parenteral nutrition in children. Pediatr. Res. 1987;21:538–41.CrossRefGoogle ScholarPubMed
Aerde, J. E., Sauer, P. J., Pencharz, P. B., Smith, J. M., Swyer, P. R.Effect of replacing glucose with lipid on the energy metabolism of newborn infants. Clin. Sci. 1989;76:581–8.CrossRefGoogle ScholarPubMed
Jones, M. O., Pierro, A., Hammond, P., Nunn, A., Lloyd, D. A.Glucose utilization in the surgical newborn infant receiving total parenteral nutrition. J. Pediatr. Surg. 1993b;28:1121–5.CrossRefGoogle Scholar
Pierro, A., Jones, M. O., Hammond, P., Nunn, A., Lloyd, D. A.Utilization of intravenous fat in the surgical newborn infant. Proceedings of the Nutrition Society; 1993;52:237A.
Pierro, A., Carnielli, V., Filler, R. M., Smith, J., Heim, T.Metabolism of intravenous fat emulsion in the surgical newborn. J. Pediatr. Surg. 1989;24:95–101.CrossRefGoogle ScholarPubMed
Heim, T., Putet, G., Verellen, G. et al. Energy cost of intravenous alimentation in the newborn infant. In Stern, L., Salle, B., Friis-Hansen, B., eds. Intensive Care in the Newborn Vol. 3. New York, NY: Masson; 1981:219–37.Google Scholar
Helms, R. A., Whitington, P. F., Mauer, E. C.et al.Enhanced lipid utilization in infants receiving oral L-carnitine during long-term parenteral nutrition. J. Pediatr. 1986;109:984–8.CrossRefGoogle ScholarPubMed
Tibboel, D., Delemarre, F. M., Przyrembel, H.Carnitine deficiency in surgical neonates receiving total parenteral nutrition. J. Pediatr. Surg. 1990;25:418–21.CrossRefGoogle ScholarPubMed
Eaton, S.Control of mitochondrial β-oxidation flux. Prog. Lipid Res. 2002;41:197–239.CrossRefGoogle ScholarPubMed
Heinonen, O. J., Takala, J.Moderate carnitine depletion and long-chain fatty-acid oxidation, exercise capacity, and nitrogen-balance in the rat. Pediatr. Res. 1994;36:288–92.CrossRefGoogle ScholarPubMed
Cairns, P. A., Stalker, D. J.Carnitine supplementation of parenterally fed neonates (Cochrane Review). The Cochrane Library Issue 4, 2002.Google Scholar
Ulrich, H., Pastores, S. M., Katz, D. P., Kvetan, V.Parenteral use of medium-chain triglycerides: a reappraisal. Nutrition 1996;12:231–8.CrossRefGoogle ScholarPubMed
Lai, H. S., Chen, W. J.Effects of medium-chain and long-chain triacylglycerols in pediatric surgical patients. Nutrition 2000;16:401–6.CrossRefGoogle ScholarPubMed
Papavassilis, C.Use of medium-chain triacylglycerols in parenteral nutrition of children. Nutrition 2000;16:460–1.CrossRefGoogle ScholarPubMed
Donnell, S. C., Lloyd, D. A., Eaton, S., Pierro, A.The metabolic response to intravenous medium-chain triglycerides in infants after surgery. J. Pediatr. 2002;141:689–94.CrossRefGoogle ScholarPubMed
Snyderman, S. E., Boyer, A., Kogut, M. D., Holt, L. E. J.The protein requirement of the premature infant. I. The effect of protein intake on the retention of nitrogen. J. Pedia. 1969;74:872–80.CrossRefGoogle ScholarPubMed
Zlotkin, S. H., Bryan, M. H., Anderson, G. H.Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J. Pediatri. 1981;99:115–20.CrossRefGoogle ScholarPubMed
Catzeflis, C., Schutz, Y., Micheli, J. L.et al.. Whole-body protein-synthesis and energy-expenditure in very low birth-weight infants. Pediatr. Res. 1985;19:679–87.CrossRefGoogle ScholarPubMed
Garlick, P. J., Clugston, G. A., Swick, R. W., Waterlow, J. C.Diurnal pattern of protein and energy metabolism in man. Am. J. Clin. Nutr. 1980;33:1983–6.CrossRefGoogle ScholarPubMed
Golden, M., Waterlow, J. C., Picou, D.The relationship between dietary intake, weight change, nitrogen balance, and protein turnover in man. Am. J. Clin. Nutr. 1977;30:1345–8.CrossRefGoogle ScholarPubMed
Pencharz, P. B., Masson, M., Desgranges, F., Papageorgiou, A.Total-body protein-turnover in human premature neonates – effects of birth-weight, intrauterine nutritional-status and diet. Clin. Sci. 1981;61:207–15.CrossRefGoogle Scholar
Zlotkin, S. H., Stallings, V. A., Pencharz, P. B.Total parenteral nutrition in children. Pediatr. Clin. N. Am. 1985;32:381–400.CrossRefGoogle ScholarPubMed
American Academy of Pediatrics Committee on Nutrition. Commentary on parenteral nutrition. Pediatrics 1983;71:547–52.
Chessex, P., Gagne, G., Pineault, M.et al.. Metabolic and clinical consequences of changing from high-glucose to high-fat regimens in parenterally fed newborn-infants. J. Pediatr. 1989;115:992–7.CrossRefGoogle ScholarPubMed
Long, J. M., Wilmore, D. W., Mason, J., Pruitt, J.Effect of carbohydrate and fat intake on nitrogen excretion during total intravenous feeding. Ann. Surg. 1977;185:417–22.CrossRefGoogle ScholarPubMed
Tulikoura, I., Huikuri, K.Changes in nitrogen metabolism in catabolic patients given three different parenteral nutrition regimens. Acta Chir. Scand. 1981;147:519–24.Google ScholarPubMed
Rubecz, I., Mestyan, J., Varga, P., Klujber, L.Energy metabolism, substrate utilization, and nitrogen balance in parenterally fed postoperative neonates and infants. The effect of glucose, glucose + amino acids, lipid + amino acids infused in isocaloric amounts. J. Pediatr. 1981;98:42–6.CrossRefGoogle ScholarPubMed
Bark, S., Holm, I., Hakansson, I., Wretlind, A.Nitrogen-sparing effect of fat emulsion compared with glucose in the postoperative period. Acta Chir. Scand. 1976;142:423–7.Google ScholarPubMed
Pierro, A., Carnielli, V., Filler, R. M., Smith, J., Heim, T.Characteristics of protein sparing effect of total parenteral nutrition in the surgical infant. J. Pediatr. Surg. 1988;23:538–42.CrossRefGoogle ScholarPubMed
Jones, M. O., Pierro, A., Garlick, P. J.et al.Protein metabolism kinetics in neonates: effect of intravenous carbohydrate and fat. J. Pediatr. Surg. 1995;30:458–62.CrossRefGoogle ScholarPubMed
Pierro, A., Jones, M., Garlick, P.et al.. Nonprotein energy-intake during total parenteral-nutrition – effect on protein-turnover and energy-metabolism. Clin. Nutr. 1995;14:47–9.CrossRefGoogle Scholar
Marconi, A. M., Battaglia, F. C., Meschia, G., Sparks, J. W.A comparison of amino acid arteriovenous differences across the liver and placenta of the fetal lamb. Am. J. Physiol. 1989;257:E909–15.Google ScholarPubMed
Souba, W. W., Austgen, T. R.Interorgan glutamine flow following surgery and infection. J. Parenter. Enteral Nutr. 1990;14:90S–3S.CrossRefGoogle ScholarPubMed
Lacey, J. M., Wilmore, D. W.Is glutamine a conditionally essential amino acid?Nutr. Rev. 1990;48:297–309.CrossRefGoogle ScholarPubMed
Windmueller, H. G., Spaeth, A. E.Uptake and metabolism of plasma glutamine by the small intestine. J. Biol. Chem. 1974;249:5070–9.Google ScholarPubMed
McAnena, O. J., Moore, F. A., Moore, E. E., Jones, T. N., Parsons, P.Selective uptake of glutamine in the gastrointestinal tract: confirmation in a human study. Br. J. Surg. 1991;78:480–2.CrossRefGoogle Scholar
Furst, P., Pogan, K., Stehle, P.Glutamine dipeptides in clinical nutrition. Nutrition 1997;13:731–7.CrossRefGoogle ScholarPubMed
Ziegler, T. R., Young, L. S., Benfell, K.et al.Clinical and metabolic efficacy of glutamine-supplemented parenteral nutrition after bone marrow transplantation. A randomized, double-blind, controlled study. Ann. Intern. Med. 1992;116:821–8.CrossRefGoogle ScholarPubMed
Chang, W. K., Yang, K. D., Shaio, M. F.Effect of glutamine on Th1 and Th2 cytokine responses of human peripheral blood mononuclear cells. Clin. Immunol. 1999;93:294–301.CrossRefGoogle ScholarPubMed
Dewitt, R. C., Wu, Y., Renegar, K. B., Kudsk, K. A.Glutamine-enriched total parenteral nutrition preserves respiratory immunity and improves survival to a Pseudomonas pneumonia. J. Surg. Res. 1999;84:13–18.CrossRefGoogle ScholarPubMed
Houdijk, A. P. J., Rijnsburger, E. R., Jansen, J.et al.Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 1998;352:772–6CrossRefGoogle ScholarPubMed
Griffiths, R. D., Jones, C., Palmer, T. E. A.Six-month outcome of critically ill patients given glutamine-supplemented parenteral nutrition. Nutrition 1997;13:295–302.Google ScholarPubMed
Wilmore, D. W., Smith, R. J., O'Dwyer, S. T.et al.. The gut: a central organ after surgical stress. Surgery 1988;104:917–23.Google ScholarPubMed
Burke, D. J., Alverdy, J. C., Aoys, E., Moss, G. S.Glutamine-supplemented total parenteral nutrition improves gut immune function. Arch. Surg. 1989;124:1396–9.CrossRefGoogle ScholarPubMed
Inoue, Y., Grant, J. P., Snyder, P. J.Effect of glutamine-supplemented intravenous nutrition on survival after Escherichia coli-induced peritonitis. J. Parenter. Enteral Nutr. 1993;17:41–6.CrossRefGoogle ScholarPubMed
Jiang, Z. M., Wang, L. J., Qi, Y.et al.Comparison of parenteral nutrition supplemented with L-glutamine or glutamine dipeptides. J. Parenter. Enteral Nutr. 1993;17:134–41.CrossRefGoogle ScholarPubMed
Tremel, H., Kienle, B., Weilemann, L. S., Stehle, P., Furst, P.Glutamine dipeptide-supplemented parenteral-nutrition maintains intestinal function in the critically ill. Gastroenterology 1994;107:1595–601.CrossRefGoogle ScholarPubMed
Allen, S. J., Pierro, A., Cope, L.et al.Glutamine-supplemented parenteral-nutrition in a child with short- bowel syndrome. J. Pediatr. Gastroenterol. Nutr. 1993;17:329–32.CrossRefGoogle Scholar
Hulst, R. R., Kreel, B. K., Meyenfeldt, M. F.et al.Glutamine and the preservation of gut integrity. Lancet 1993;341:1363–5.CrossRefGoogle ScholarPubMed
Stehle, P., Zander, J., Mertes, N.et al.Effect of parenteral glutamine peptide supplements on muscle glutamine loss and nitrogen balance after major surgery. Lancet 1989;1:231–3.CrossRefGoogle ScholarPubMed
Markley, M. A., Pierro, A., Eaton, S.Hepatocyte mitochondrial metabolism is inhibited in neonatal rat endotoxaemia: effects of glutamine. Clin. Sci. 2002;102:337–44.CrossRefGoogle ScholarPubMed
Babu, R., Eaton, S., Drake, D. P., Spitz, L., Pierro, A.Glutamine and glutathione counteract the inhibitory effects of mediators of sepsis in neonatal hepatocytes. J. Pediatr. Surg. 2001;36:282–6.CrossRefGoogle ScholarPubMed
Tubman, T. R. J., Thompson, S. W.Glutamine supplementation for preventing morbidity in preterm infants (Cochrane Review). Oxford, England: The Cochrane Library Update Software; 2001:1.Google Scholar
Lacey, J. M., Crouch, J. B., Benfell, K.et al.The effects of glutamine-supplemented parenteral nutrition in premature infants. J. Parenter. Enteral Nutr. 1996;20:74–80.CrossRefGoogle ScholarPubMed
Neu, J., Roig, J. C., Meetze, W. H.et al.Enteral glutamine supplementation for very low birth weight infants decreases morbidity. J. Pediatr. 1997;131:691–9.CrossRefGoogle ScholarPubMed
Laborie, S., Lavoie, J. C., Chessex, P.Increased urinary peroxides in newborn infants receiving parenteral nutrition exposed to light. J. Pediatr. 2000;136:628–32.CrossRefGoogle Scholar
Laborie, S., Lavoie, J. C., Pineault, M., Chessex, P.Contribution of multivitamins, air, and light in the generation of peroxides in adult and neonatal parenteral nutrition solutions. Ann. Pharmacother. 2000;34:440–5.CrossRefGoogle ScholarPubMed
Lavoie, J. C., Belanger, S., Spalinger, M., Chessex, P.Admixture of a multivitamin preparation to parenteral nutrition: The major contributor to in vitro generation of peroxides. Pediatrics 1997;99:E61–5.CrossRefGoogle ScholarPubMed
Silvers, K. M., Sluis, K. B., Darlow, B. A.et al.. Limiting light-induced lipid peroxidation and vitamin loss in infant parenteral nutrition by adding multivitamin preparations to Intralipid. Acta Paediatr. 2001;90:242–9.CrossRefGoogle ScholarPubMed
Bos, A. P., Tibboel, D., Hazebroek, F. W.et al.Total parenteral nutrition associated cholestasis: a predisposing factor for sepsis in surgical neonates?Eur. J. Pediatr. 1990;149:351–3.CrossRefGoogle ScholarPubMed
Wesley, J. R., Coran, A. G.Intravenous nutrition for the pediatric patient. Semin. Pediatr. Surg. 1992;1:212–30.Google ScholarPubMed
Seashore, J. H.Central venous access devices in children: trends over 543 patient years. Clin. Nutr. 1994;13:27–A079.CrossRefGoogle Scholar
Pierro, A., Saene, H. K. F., Donnell, S. C.et al.Microbial translocation in neonates and infants receiving long-term parenteral-nutrition. Arch. Surg. 1996;131:176–9.CrossRefGoogle ScholarPubMed
Pierro, A., Saene, H. K. F., Jones, M. O.et al.Clinical impact of abnormal gut flora in infants receiving parenteral nutrition. Ann. Surg. 1998;227:547–52.CrossRefGoogle ScholarPubMed
Alverdy, J. C., Aoys, E., Moss, G. S.Total parenteral nutrition promotes bacterial translocation from the gut. Surgery 1988;104:185–90.Google Scholar
Okada, Y., Klein, N. J., Pierro, A.Peter Paul Rickham Prize – 1998. Neutrophil dysfunction: the cellular mechanism of impaired immunity during total parenteral nutrition in infancy. J. Pediatr. Surg. 1999;34:242–5.CrossRefGoogle Scholar
Okada, Y., Klein, N. J., Saene, H. K.et al.. Bactericidal activity against coagulase-negative staphylococci is impaired in infants receiving long-term parenteral nutrition. Ann. Surg. 2000;231:276–81.CrossRefGoogle ScholarPubMed
Okada, Y., Klein, N., Saene, H. K., Pierro, A.Small volumes of enteral feedings normalise immune function in infants receiving parenteral nutrition. J. Pediatr. Surg. 1998;33:16–19.CrossRefGoogle ScholarPubMed
Monson, J. R., Ramsden, C. W., MacFie, J., Brennan, T. G., Guillou, P. J.Immunorestorative effect of lipid emulsions during total parenteral nutrition. Br. J. Surg. 1986;73:843–6.CrossRefGoogle ScholarPubMed
Sedman, P. C., Somers, S. S., Ramsden, C. W., Brennan, T. G., Guillou, P. J.Effects of different lipid emulsions on lymphocyte function during total parenteral nutrition. Br. J. Surg. 1991;78:1396–9.CrossRefGoogle ScholarPubMed
Palmblad, J., Brostrom, O., Lahnborg, G., Uden, A. M., Venizelos, N.Neutrophil functions during total parenteral nutrition and intralipid infusion. Am. J. Clin. Nutr. 1982;35:1430–6.CrossRefGoogle ScholarPubMed
Fisher, G. W., Hunter, K. W., Wilson, S. R., Mease, A. D.Diminished bacterial defences with intralipid. Lancet 1980;2:819–20.CrossRefGoogle Scholar
Heyman, M. B., Storch, S., Ament, M. E.The fat overload syndrome. Report of a case and literature review. Am. J. Dis. Child. 1981;135:628–30.CrossRefGoogle ScholarPubMed
Wesson, D. E., Rich, Hampton R., Zlotkin, S. H., Pencharz, P. B.Fat overload syndrome causing respiratory insufficiency. J. Pediatr. Surg. 1984;19:777–8.CrossRefGoogle ScholarPubMed
Hammerman, C., Aramburo, M. J.Decreased lipid intake reduces morbidity in sick premature neonates. J. Pediatr. 1988;113:1083–8.CrossRefGoogle ScholarPubMed
Pitkanen, O., Hallman, M., Andersson, S.Generation of free-radicals in lipid emulsion used in parenteral-nutrition. Pediatr. Res. 1991;29:56–9.CrossRefGoogle ScholarPubMed
Hinder, R. A., Stein, H. J.Oxygen-derived free radicals. Arch. Surg. 1991;126:104–5.CrossRefGoogle ScholarPubMed
Brandt, R. L., Foley, W. J., Fink, G. H., Regan, W. J.Mechanism of perforation of the heart with production of hydropericdium by a venous catheter and its prevention. Am. J. Surg. 1970;119:311–6.CrossRefGoogle ScholarPubMed
Lucas, H., Attard-Montalto, S. P., Saha, V.Central venous catheter tip position and malfunction in a paediatric oncology unit. Pediatr. Surg. Int. 1996;11:159–63.CrossRefGoogle Scholar
Bar, J. G., Galvis, A. G.Perforation of the heart by central venous catheters in infants: guidelines to diagnosis and management. J. Pediatr. Surg. 1983;18:284–7.Google Scholar
Engelenburg, K. C., Festen, C.Cardiac tamponade: a rare but life-threatening complication of central venous catheters in children. J. Pediatr. Surg. 1998;33:1822–4.CrossRefGoogle ScholarPubMed
Goutail-Flaud, M. F., Sfez, M., Berg, A.et al.Central venous catheter-related complications in newborns and infants: a 587-case survey. J. Pediatr. Surg. 1991;26:645–50.CrossRefGoogle ScholarPubMed
Bagwell, C. E., Salzberg, A. M., Sonnino, R. E., Haynes, J. H.Potentially lethal complications of central venous catheter placement. J. Pediatr. Surg. 2000;35:709–13.CrossRefGoogle ScholarPubMed
Bell, R. L., Ferry, G. D., Smith, E. O.Total parenteral nutrition-related cholestasis in infants. J. Parenter. Enteral Nutr. 1986;10:356–9.CrossRefGoogle ScholarPubMed
Cohen, D., Olsen, M.Pediatric total parenteral nutrition. Liver histopathology. Arch. Pathol. Lab. Med. 1981;105:152–6.Google ScholarPubMed
Hofmann, A. F.Defective biliary secretion during total parenteral nutrition: probable mechanisms and possible solutions. J. Pediatr. Gastroenterol. Nutr. 1995;20:376–90.CrossRefGoogle ScholarPubMed
Kubota, A., Yonekura, T., Hoki, M.et al.Total parenteral nutrition-associated intrahepatic cholestasis in infants: 25 years' experience. J. Pediatr. Surg. 2000;35:1049–51.CrossRefGoogle ScholarPubMed
Drongowski, R. A., Coran, A. G.An analysis of factors contributing to the development of total parenteral nutrition-induced cholestasis. J. Parenter. Enteral Nutr. 1989;13:586–9.CrossRefGoogle ScholarPubMed
Quigley, E. M. M., Marsh, M. N., Shaffer, J. L.et al.Hepatobiliary complications of total parenteral nutrition. Gastroenterology 1993;104:286–301.CrossRefGoogle ScholarPubMed
Teitelbaum, D. H., Tracy, T.Parenteral nutrition-associated cholestasis. Semin. Pediatr. Surg. 2001;10:72–80.CrossRefGoogle ScholarPubMed
Beath, S. V., Davies, P., Papadopoulou, A.et al.Parenteral nutrition-related cholestasis in postsurgical neonates: multivariate analysis of risk factors. J. Pediatr. Surg. 1996;31:604–6.CrossRefGoogle ScholarPubMed
Moss, R. L., Das, J. B., Raffensperger, J. G.Necrotizing enterocolitis and total parenteral nutrition-associated cholestasis. Nutrition 1996;12:340–3.CrossRefGoogle ScholarPubMed
Watkins, J. B., Szczepanik, P., Gould, J. B., Klein, P., Lester, R.Bile salt metabolism in the human premature infant. Preliminary observations of pool size and synthesis rate following prenatal administration of dexamethasone and phenobarbital. Gastroenterology 1975;69:706–13.Google ScholarPubMed
Pereira, G. R., Piccoli, D. A. Cholestasis and other hepatic complications. In Yu, V. Y. H., MacMahon, R. A., eds. Intravenous Feeding of the Neonate. London: Edward Arnold;1992s:153–65.Google Scholar
Matos, C., Avni, E. F., Gansbeke, D., Pardou, A., Struyven, J.Total parenteral nutrition (total parental nutrition) and gallbladder diseases in neonates. Sonographic assessment. J. Ultrasound Med. 1987;6:243–8.CrossRefGoogle Scholar
Hodes, J. E., Grosfeld, J. L., Weber, T. R.et al.Hepatic failure in infants on total parenteral nutrition (total parental nutrition): clinical and histopathologic observations. J. Pediatr. Surg. 1982;17:463–8.CrossRefGoogle Scholar
Moss, R. L., Amii, L. A.New approaches to understanding the etiology and treatment of total parenteral nutrition-associated cholestasis. Semin. Pediatr. Surg. 1999;8:140–7.CrossRefGoogle ScholarPubMed
Iyer, K. R., Spitz, L., Clayton, P.BAPS prize lecture: new insight into mechanisms of parenteral nutrition-associated cholestasis: role of plant sterols. J. Pediatr. Surg. 1998;33:1–6.CrossRefGoogle ScholarPubMed
Clayton, P. T., Bowron, A., Mills, K. A.et al.Phytosterolemia in children with parenteral nutrition-associated cholestatic liver disease. Gastroenterology 1993;105:1806–13.CrossRefGoogle ScholarPubMed
Jawaheer, G., Lloyd, D. A., Shaw, N. J., Pierro, A.Minimal enteral feeding promotes gallbadder contractility in neonates. Proceedings of the Nutrition Society 1996;183A:55.
Maini, B., Blackburn, G. L., Bistrian, B. R.et al.Cyclic hyperalimentation: an optimal technique for preservation of visceral protein. J. Surg. Res. 1976;20:515–25.CrossRefGoogle ScholarPubMed
Merritt, R. J.Cholestasis associated with total parenteral nutrition. J. Pediatr. Gastroenterol. Nutr. 1986;5:9–22.CrossRefGoogle Scholar
Ternullo, S. R., Burkart, G. J.Experience with cyclic hyper-alimentation in infants. J. Parenter. Enteral Nutr. 1979;3:516.Google Scholar
Sitzmann, J. V., Pitt, H. A., Steinborn, P. A., Pasha, Z. R., Sanders, R. C.Cholecystokinin prevents parenteral nutrition induced biliary sludge in humans. Surg. Gynecol. Obstet. 1990;170:25–31.Google ScholarPubMed
Rintala, R. J., Lindahl, H., Pohjavuori, M.Total parenteral nutrition-associated cholestasis in surgical neonates may be reversed by intravenous cholecystokinin: a preliminary report. J. Pediatr. Surg. 1995;30:827–30.CrossRefGoogle ScholarPubMed
Teitelbaum, D. H., Han-Markey, T., Drongowski, R. A.et al.Use of cholecystokinin to prevent the development of parenteral nutrition-associated cholestasis. J. Parenter. Enteral Nutr. 1997;21:100–3.CrossRefGoogle ScholarPubMed
Levine, A., Maayan, A., Shamir, R.et al.Parenteral nutrition-associated cholestasis in preterm neonates: evaluation of ursodeoxycholic acid treatment. J. Pediatr. Endocrinol. Metab. 1999;12:549–53.CrossRefGoogle ScholarPubMed
Rintala, R., Lindahl, H., Pohjavuori, M., Saxen, H., Sariola, H.Surgical treatment of intractable cholestasis associated with total parenteral nutrition in premature infants. J. Pediatr. Surg. 1993;28:716–9.CrossRefGoogle Scholar
Furukawa, H., Reyes, J., Abu-Elmagd, K.Clinical intestinal transplantation. Clin. Nutr. 1996;15:45–52.CrossRefGoogle ScholarPubMed
Wispe, J. R., Bell, E. F., Roberts, R. J.Assessment of lipid peroxidation in newborn infants and rabbits by measurements of expired ethane and pentane: influence of parenteral lipid infusion. Pediatr. Res. 1985;19:374–9.CrossRefGoogle ScholarPubMed
Basu, R., Muller, D. P. R., Papp, E.et al.Free radical formation in infants: the effect of critical illness, parenteral nutrition, and enteral feeding. J. Pediatr. Surg. 1999;34:1091–5.CrossRefGoogle ScholarPubMed
Helbock, H. J., Motchnik, P. A., Ames, B. N.Toxic hydroperoxides in intravenous lipid emulsions used in preterm infants. Pediatrics 1993;91:83–7.Google ScholarPubMed
Cooke, R. W.Factors associated with chronic lung disease in preterm infants. Arch. Dis. Child. 1991;66:776–9.CrossRefGoogle ScholarPubMed
Basu, R., Muller, D. P. R., Eaton, S., Merryweather, I., Pierro, A.Lipid peroxidation can be reduced in infants on total parenteral nutrition by promoting fat utilization. J. Pediatr. Surg. 1999;34:255–9.CrossRefGoogle Scholar
Moore, F. A., Moore, E. E., Jones, T. N., McCroskey, B. L., Peterson, V. M.TEN versus total parental nutrition following major abdominal trauma – reduced septic morbidity. J. Trauma 1989;29:916–22.CrossRefGoogle Scholar
Moore, F. A., Feliciano, D. V., Andrassy, R. J.et al.Early enteral feeding, compared with parenteral, reduces postoperative septic complications. The results of a meta-analysis. Ann. Surg. 1992;216:172–83.CrossRefGoogle ScholarPubMed
Kudsk, K. A., Carpenter, G., Petersen, S., Sheldon, G. F.Effect of enteral and parenteral feeding in malnourished rats with E. coli-hemoglobin adjuvant peritonitis. J. Surg. Res. 1981;31:105–10.CrossRefGoogle ScholarPubMed
Kudsk, K. A., Stone, J. M., Carpenter, G., Sheldon, G. F.Enteral and parenteral feeding influences mortality after hemoglobin-E. coli peritonitis in normal rats. J. Trauma 1983;23:605–9.CrossRefGoogle ScholarPubMed
Deitch, E. A., Winterton, J., Li, M., Berg, R.The gut as a portal of entry for bacteremia. Role of protein malnutrition. Ann. Surg. 1987;205:681–92.CrossRefGoogle Scholar
Alverdy, J., Chi, H. S., Sheldon, G. F.The effect of parenteral nutrition on gastrointestinal immunity. The importance of enteral stimulation. Ann. Surg. 1985;202:681–4.CrossRefGoogle ScholarPubMed
Lin, M. T., Saito, H., Fukushima, R.et al.Route of nutritional supply influences local, systemic, and remote organ responses to intraperitoneal bacterial challenge. Ann. Surg. 1996;223:84–93.CrossRefGoogle ScholarPubMed
Shou, J., Lappin, J., Minnard, E. A., Daly, J. M.Total parenteral nutrition, bacterial translocation, and host immune function. Am. J. Surg. 1994;167:145–50.CrossRefGoogle ScholarPubMed
Lucas, A. Human milk and infant feeding. In Boyd, R., Battaglia, F. C., eds. Perinatal Medicine. London: Butterworths; 1983:172–200.Google Scholar
Hambreus, L., Forsum, E., Lonnerdal, B. Nutritional aspects of breast milk versus cow's milk formula. In McFarlane, H., Hambreus, L., Hanson, L. A., eds. Food and Immunology Symposia of the Swedish Nutrition Foundation XIII. Stockholm, Sweden: Almquist and Wiksell; 1976:Google Scholar
Taylor, C. J., Jenkins, P., Manning, D.Evaluation of a peptide formula (milk) in the management of infants with multiple GIT intolerance. Clin. Nutr. 1988;7:183–90.CrossRefGoogle Scholar
Francis, D. E.Treatment of multiple-malabsorption syndrome of infancy. J. Hum. Nutr. 1978;32:270–8.Google ScholarPubMed
Larcher, V. F., Shepherd, R., Francis, D. E., Harries, J. T.Protracted diarrhoea in infancy. Analysis of 82 cases with particular reference to diagnosis and management. Arch. Dis. Child. 1977;52:597–605.CrossRefGoogle ScholarPubMed
Jawaheer, G., Pierro, A., Lloyd, D., Shaw, N.Gall-bladder contractility in neonates – effects of parenteral and enteral feeding. Arch. Dis. Child. 1995;72:F 200–2.CrossRefGoogle ScholarPubMed
Jawaheer, G., Shaw, N. J., Pierro, A.Continuous enteral feeding impairs gallbladder emptying in infants. J. Pediatr. 2001;38:822–5.CrossRefGoogle Scholar
Catnach, S., Hinds, C., Fairclough, P.Enteral nutrition does not protect against biliary sludge in critically ill patients. Gut 1993;34:S51.Google Scholar
Toursarkissian, B., Kearney, P. A., Holley, D. T.et al.Biliary sludging in critically ill trauma patients. S. Med. J. 1995;88:420–4.CrossRefGoogle ScholarPubMed
Schwesinger, W. H., Page, C. P., Strodel, W. E.et al.Biliary sludge formation during enteral nutrition: prevalence and natural history. Surgery 1998;124:768–71.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Nutrition in the neonatal surgical patient
    • By Agostino Pierro, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK, Simon Eaton, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.040
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Nutrition in the neonatal surgical patient
    • By Agostino Pierro, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK, Simon Eaton, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.040
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Nutrition in the neonatal surgical patient
    • By Agostino Pierro, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK, Simon Eaton, Department of Paediatric Surgery, The Institute of Child Health and Great Ormond Street Hospital for Children NHS Trust, University College London, London, UK
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.040
Available formats
×