Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T15:43:02.812Z Has data issue: false hasContentIssue false

15 - Normal bone and mineral physiology and metabolism

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Oussama Itani
Affiliation:
Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI
Reginald Tsang
Affiliation:
Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

Perinatal calcium (Ca), phosphorus (P), and magnesium (Mg) metabolism involves an intricate and complex biological system of interrelated hormones and growth factors that regulate the concentrations of these minerals in the tissues of the mother, fetus, and neonate. Mineral metabolism depends on the availability of mineral substrates and interactions with hormones and growth factors including parathyroid hormone (PTH), calcitonin (CT), 1,25 dihydroxyvitamin D (1,25(OH)2D), insulin-like growth factors (IGFs) and possibly leptins. Understanding of the perinatal physiology of these minerals is important in the prevention and management of mineral disorders in the neonate.

In this chapter we review the perinatal physiology of Ca, P, and Mg metabolism in the fetus and neonate and offer a practical approach to the pathophysiology and management of Ca, P, and Mg disorders. We also review the current nutritional requirements of these minerals for enteral as well as parenteral nutrition. Finally, we review normal bone physiology, and discuss the pathophysiology, prevention, and management of metabolic bone disease or rickets/ osteopenia of prematurity.

Mineral, vitamin D and bone physiology

Body mineral content

Calcium is the fifth most abundant inorganic element in the human body. The adult human body contains about 1200 g of calcium (19 g of Ca per kg body weight). The total body Ca content in a full-term newborn is approximately 28 g, almost all of which (99%) resides in bone (8 g of Ca per kg body weight) where it serves structural and metabolic functions.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Itani, O., Tsang, R. Calcium, phosphorus and magnesium in the newborn: pathophysiology and management. In Hay, W., ed. Neonatal Nutrition and Metabolism. St. Louis: Mosby-Year Book; 1991:171–202.Google Scholar
Itani, O., Tsang, R. C. Calcium and mineral metabolism in the fetus. In Thorburn, G. D., Harding, R., eds. Textbook of Fetal Physiology. Oxford: Oxford University Press; 1994:368–87.Google Scholar
Itani, O., Mehta, K., Tsang, R. C. Calcium, phosphorus and magnesium in parenteral nutrition. In Baker, R., Baker, S., Davis, A., eds. Pediatric Parenteral Nutrition. New York: Chapman & Hall; 1997:149–74.Google Scholar
Itani, O., Tsang, R. C. Bone disease. In Kaplan, L. A., Pesce, A. J., eds. Clinical Chemistry: Theory, Analysis and Correlation. 4th edn. St. Louis: Mosby-Year Book; 2003:507–34.Google Scholar
Koo, W. K., Tsang, R. C. Building better bones: calcium, magnesium, phosphorus and vitamin D. In Tsang, R. C., Zlotkin, S. H., Nichols, B. L., Hansen, J. W., eds. Nutrition During Infancy. Cincinnati, OH: Digital Educational Publishing, Inc.; 1997:175–207.Google Scholar
Koo, W. K., Tsang, R. C. Calcium, magnesium, phosphorus and vitamin D. In Tsang, R., Lucas, A., Uauy, R., Zlotkin, S., eds. Nutritional Needs of the Preterm Infant: Scientific Basis and Practical Guidelines. Baltimore: Williams & Wilkins, Inc.; 1993:135–55.Google Scholar
Widdowson, E., Spray, C.Chemical development in utero. Arch. Dis. Child. 1951;26:205–14.CrossRefGoogle ScholarPubMed
Widdowson, E. M., Southgate, D. A., Hey, E. Fetal growth and body composition. In Linblad, B. S., ed. Perinatal Nutrition. New York: Academic Press; 1988:3–14.Google Scholar
Forbes, G. B.Calcium accumulation by the human fetus. Pediatrics 1976;57:976–7.Google ScholarPubMed
Ziegler, E. E., O'Donnell, A. M., Nelson, S. E., Fomon, S. J.Body composition of the reference fetus. Growth 1976;40:329–41.Google ScholarPubMed
Shaw, J.Parenteral nutrition in the management of sick low birth-weight infants. Pediatr. Clin. N. Am. 1973;20:333–58.CrossRefGoogle Scholar
Shaw, J.Evidence for defective skeletal mineralization in low birth weight infants; the absorption of calcium and fat. Pediatrics 1976;57:16–25.Google ScholarPubMed
Schwartz, R., Reddi, A.Influence of magnesium depletion on matrix-induced endochondral bone formation. Calcif. Tissue. Int. 1979;29:15–20.CrossRefGoogle ScholarPubMed
Wuthier, R., Gore, S.Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: evidence for Ca-Pi acidic phospholipid complexes. Calcif Tissue Res. 1977;24:163–71.CrossRefGoogle ScholarPubMed
Loughead, J., Mimouni, F., Tsang, R.Serum ionized calcium concentrations in normal neonates. Am. J. Dis. Child. 1988;142:516–18.Google ScholarPubMed
Wandrup, J., Kroner, J., Pryds, O., Kastrup, K. W.Age-related reference values for ionized calcium in the first week of life in premature and full-term neonates. Scand. J. Clin. Lab. Invest. 1988;48:255–60.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C., Specker, B. L., Sierra, R. I., Ho, M. L.Low bone mineral content and high serum osteocalcin and 1,25-dihydroxyvitamin D in summer-versus winter-born newborn infants: an early fetal effect?J. Pediatr. Gastroenterol. Nutr. 1994;19:220–7.CrossRefGoogle ScholarPubMed
Specker, B. L., Lichtenstein, P., Mimouni, F., Gormley, C., Tsang, R. C.Calcium-regulating hormones and minerals from birth to 18 months of age: a cross-sectional study. II. Effects of sex, race, age, season, and diet on serum minerals, parathyroid hormone, and calcitonin. Pediatrics 1986;77:891–6.Google ScholarPubMed
Tsang, R. C.Neonatal magnesium disturbances. Am. J. Dis. Child. 1972;124:282–93.Google ScholarPubMed
Anast, C. S.Serum magnesium levels in the newborn. Pediatrics 1964;33:969–74.Google ScholarPubMed
Aikawa, J. K.Magnesium: its Biological Significance. Boca Raton: CRC Press; 1981;43–56.Google Scholar
Yang, X., Hosseini, J., Ruddel, M., Elin, R.Comparison of magnesium in human lymphocytes and mononuclear blood cells. Magnesium 1989;8:100–5.Google ScholarPubMed
Quamme, G., Dirks, J. Magnesium metabolism. In Maxwell, M., Kleeman, C., Narins, R., eds. Clinical Disorders of Fluid and Electrolyte Metabolism. 4th edn. New York: McGraw-Hill; 1987:297.Google Scholar
Quamme, G.Renal handling of magnesium: drug and hormone interactions. Magnesium 1986;5:248–72.Google ScholarPubMed
Rodan, G.Introduction to bone biology. Bone 1992;13:3–6.CrossRefGoogle ScholarPubMed
Martin, T., Wah, K.Bone cell physiology. Endocrin. Metab. Clin. N. Am. 1989;18:833–58.Google ScholarPubMed
Canalis, E.Growth factors and their potential clinical value. J. Clin. Endocrinol. Metab. 1992;75:1–4.Google ScholarPubMed
Canalis, E., Economides, A. N., Gazzerro, E.Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr. Rev. 2003;24:218–35.CrossRefGoogle ScholarPubMed
Ballock, T. R., , O'Keefe R. J.The biology of the growth plate. J. Bone Joint Surg. Am. 2003;85-A:715–26.CrossRefGoogle ScholarPubMed
Ballock, R. T., O'Keefe, R. J.Physiology and pathophysiology of the growth plate. Birth Defects Res. Part C Embryo Today 2003;69:123–43.CrossRefGoogle ScholarPubMed
Yamaguchi, A., Komori, T., Suda, T.Regulation of osteoblast differentiation mediated by bone morphogenetic proteins, hedgehogs, and Cbfa1. Endocr. Rev. 2000;21:393–411.CrossRefGoogle ScholarPubMed
Roodman, G. D.Advances in bone biology: the osteoclast. Endocr. Rev. 1996;17:308–32.Google ScholarPubMed
Blair, H. C., Athanasou, N. A.Recent advances in osteoclast biology and pathological bone resorption. Histol. Histopathol. 2004;19:189–99.Google ScholarPubMed
Eerden, B. C., Karperien, M., Wit, J. M.Systemic and local regulation of the growth plate. Endocr. Rev. 2003;24:782–801.CrossRefGoogle ScholarPubMed
Riggs, B. L., Khosla, S., Melton, L. J. 3rd. Sex steroids and the construction and conservation of the adult skeleton. Endocr. Rev. 2002;23:279–302.CrossRefGoogle ScholarPubMed
Frost, H. M.Perspectives: a proposed general model of the “mechanostat” (suggestions from a new paradigm). Anat. Rec. 1996;244:139–47.3.0.CO;2-X>CrossRefGoogle Scholar
Frost, H. M.From Wolff's law to the Utah paradigm: insights about bone physiology and its clinical applications. Anat. Rec. 2001;262:398–419.CrossRefGoogle ScholarPubMed
Miller, M. E.The bone disease of preterm birth: a biomechanical perspective. Pediatr. Res. 2003;53:10–15.CrossRefGoogle ScholarPubMed
Conroy, B. P., Kraemer, W. J., Maresh, C. M.et al.Bone mineral density in elite junior Olympic weightlifters. Med. Sci. Sports Exerc. 1993;25:1103–9.CrossRefGoogle ScholarPubMed
Larson, C. M., Henderson, R. C.Bone mineral density and fractures in boys with Duchenne muscular dystrophy. J. Pediatr. Orthop. 2000;20:71–4.CrossRefGoogle ScholarPubMed
Rauch, F., Schoenau, E.The developing bone: slave or master of its cells and molecules?Pediatr. Res. 2001;50:309–14.CrossRefGoogle ScholarPubMed
Rauch, F., Schoenau, E.Skeletal development in premature infants: a review of bone physiology beyond nutritional aspects. Arch. Dis. Child. Fetal Neonat. Ed. 2002;86:F82–5.CrossRefGoogle ScholarPubMed
Larsen, W. J.Essentials of Human Embryology. New York: Churchill Livingstone; 1998:207–16.Google Scholar
Rodriguez, J. I., Garcia-Alix, A., Palacios, J.et al.Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J. Bone. Joint. Surg. [Am]. 1988;70:1052–60.CrossRefGoogle Scholar
Rodriguez, J. I., Palacios, J., Garcia-Alix, A.et al.Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif. Tissue. Int. 1988;43:335–9.CrossRefGoogle ScholarPubMed
Rodriguez, J. I., Palacios, J., Ruiz, A.et al.Morphological changes in long bone development in fetal akinesia deformation sequence: an experimental study in curarized rat fetuses. Teratology 1992;45:213–21.CrossRefGoogle ScholarPubMed
Rodriguez, J. I., Palacios, J.Pathogenetic mechanisms of fetal akinesia deformation sequence and oligohydramnios sequence. Am. J. Med. Genet. 1991;40:284–9.CrossRefGoogle ScholarPubMed
Miller, M. E., Hangartner, T. N.Temporary brittle bone disease: association with decreased fetal movement and osteopenia. Calcif. Tissue Int. 1999;64:137–43.CrossRefGoogle ScholarPubMed
Kakebeeke, T. J., Siebenthal, K., Largo, R. H.Differences in movement quality at term among preterm and term infants. Biol. Neonate 1997;71:367–78.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C.Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization. Proc. Nutr. Soc. 2000;59:55–63.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C.Bone in the pregnant mother and newborn at birth. Clin. Chim. Acta. 2003;333:1–11.CrossRefGoogle ScholarPubMed
Douglas, A. S., Miller, M. H., Reid, D. M.et al.Seasonal differences in biochemical parameters of bone remodelling. J. Clin. Pathol. 1996;49:284–9.CrossRefGoogle ScholarPubMed
Hunziker, E. B.Mechanism of longitudinal bone growth and its regulation by growth plate chondrocytes. Microsc. Res. Tech. 1994;28:505–19.CrossRefGoogle ScholarPubMed
Ohlsson, C., Bengtsson, B. A., Isaksson, O. G., Andreassen, T. T., Slootweg, M. C.Growth hormone and bone. Endocr. Rev. 1998;19:55–79.Google Scholar
Williams, G. R., Robson, H., Shalet, S. M.Thyroid hormone actions on cartilage and bone: interactions with other hormones at the epiphyseal plate and effects on linear growth. J. Endocrinol. 1998;157:391–403.CrossRefGoogle ScholarPubMed
Lanske, B., Karaplis, A. C., Lee, K.et al.PTH/PTHrP receptor in early development and Indian hedgehog-regulated bone growth. Science 1996;273:663–6.CrossRefGoogle ScholarPubMed
Vortkamp, A., Lee, K., Lanske, B.et al.Regulation of rate of cartilage differentiation by Indian hedgehog and parathyroid hormone-related protein. Science 1996;273:613–22.CrossRefGoogle Scholar
Horton, W. A.Skeletal development: insights from targeting the mouse genome. Lancet 2003;362:560–9.CrossRefGoogle ScholarPubMed
Chan, G. M.Calcium needs during childhood. Ped. Annals. 2001;30;666–70.CrossRefGoogle ScholarPubMed
Steelman, J., Zeitler, P.Osteoporosis in pediatrics. Pediatr. Rev. 2001;22:56–65.CrossRefGoogle Scholar
Slemenda, C., Miller, J., Hui, S., Reister, T., Johnston, C.Role of physical activity in the development of skeletal mass in children. J. Bone. Min. Res. 1991;6:1227–33.CrossRefGoogle ScholarPubMed
Committee on Nutrition. Calcium requirements of infants, children, and adolescents. Pediatrics 1999;104:1152–57.CrossRef
Matkovic, V., Fonatana, D., Tominac, C., Goel, P., Chestnut, C. I.Factors that influence peak bone mass formation: a study of calcium balance and the inheritance of bone mass in adolescent females. Am. J. Clin. Nutr. 1990;52:878–88.CrossRefGoogle ScholarPubMed
Matkovic, V.Calcium intake and peak bone mass. N. Engl. J. Med. 1992;327:119–20.CrossRefGoogle ScholarPubMed
Martin, A. D., Bailey, D. A., McKay, H. A.et al.Bone mineral and calcium accretion during puberty. Am. J. Clin. Nutr. 1997;66:611–15.CrossRefGoogle ScholarPubMed
Krall, E., Dawson-Hughes, B.Heritable and life style determinants of bone mineral density. J. Bone. Min. Res. 1993;8:1–9.CrossRefGoogle ScholarPubMed
Hogler, W., Schmid, A., Raber, G.et al.Perinatal bone turnover in term human neonates and the influence of maternal smoking. Pediatr. Res. 2003;53:817–22.CrossRefGoogle ScholarPubMed
Colak, O., Alatas, O., Aydogdu, S., Uslu, S.The effect of smoking on bone metabolism: maternal and cord blood bone marker levels. Clin. Biochem. 2002;35:247–50.CrossRefGoogle Scholar
Johnston, C., Miller, J., Slemenda, C.et al.Calcium supplementation and increases in bone mineral density in children. N. Engl. J. Med. 1992;327:82–7.CrossRefGoogle ScholarPubMed
Wyshak, G., Frisch, R. E.Carbonated beverages, dietary calcium, the dietary calcium/phosphorus ratio, and bone fractures in girls and boys. J. Adolesc. Health 1994;15:210–15.CrossRefGoogle ScholarPubMed
Wyshak, G.Teenaged girls, carbonated beverage consumption, and bone fractures. Arch. Pediatr. Adolesc. Med. 2000;154:610–13.CrossRefGoogle ScholarPubMed
Simkin, A., Ayalon, J., Leichter, I.Increased bone density due to bone-loading exercises in postmenopausal osteoporotic women. Calcif. Tissue Int. 1987;40:59–63.CrossRefGoogle ScholarPubMed
Burger, E., Klein-Nulend, J., Veldhuijzen, J. P.Mechanical stress and osteogenesis in vitro. J. Bone. Min. Res. 1992;7:S397–401.CrossRefGoogle ScholarPubMed
Pead, M., Skerry, T., Lanyon, L.Direct transformation from quiescence to bone formation in the adult periosteum following a single brief period of bone loading. J. Bone. Min. Res. 1988;3:647–56.CrossRefGoogle ScholarPubMed
Buchanan, J., Myers, C., Loyd, T., Leuenberger, P., Demers, L.Determinants of peak trabecular bone density in women: the role of androgens, estrogen, and exercise. J. Bone. Min. Res. 1988;3:673–80.CrossRefGoogle ScholarPubMed
Eriksen, E., Colvard, D., Berg, N.et al.Evidence of estrogen receptors in normal human osteoblast-like cells. Science 1988;241:84–6.CrossRefGoogle ScholarPubMed
Lindsay, R. The effect of estrogens in prevention and treatment of osteoporosis. In Munro, H., Schlierf, G., ed. Nutrition of the Elderly. Nestlé Nutrition Workshop Series, V 29. New York: Raven Press; 1992:161–7.Google Scholar
Yamanaka, Y., Matsuo, H., Mochizuki, S.et al.Effects of estriol on cell viability and 1,25-dihydroxyvitamin D3 receptor mRNA expression in cultured human osteoblast-like cells. Gynecol. Endocrinol. 2003;17:455–61.CrossRefGoogle ScholarPubMed
Krieger, N. S., Bushinsky, D. A., Frick, K. K.Cellular mechanisms of bone resorption induced by metabolic acidosis. Semin. Dial. 2003;16:463–6.CrossRefGoogle ScholarPubMed
Pieltain, C., , Curtis M., Gérard, P., Rigo, J.Weight gain composition in preterm infants with dual energy x-ray absorptiometry. Pediatr. Res. 2001;49:120–4.CrossRefGoogle ScholarPubMed
Koo, W. W. K., Walter, J., Bush, A. J.Technical considerations of dual-energy x-ray absorptiometry based on bone mineral measurements for pediatric studies. J. Bone Miner. Res. 1995;10:1998–2004.CrossRefGoogle Scholar
Koo, W. W. K., Massom, L. R., Walters, J.Validation and accuracy and precision of dual energy x-ray absorptiometry for infants. J. Bone Miner. Res. 1995;10:1111–15.CrossRefGoogle ScholarPubMed
Brunton, J. A., Weiler, H. A., Atkinson, S. A.Improvement in the accuracy of dual energy x-ray absorptiometry for whole body and regional analysis of body composition: validation using piglets and methodologic considerations in infants. Pediatr. Res. 1997;41:590–6.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Ahluwalia, B. W.Total bone mineral content and body composition by x-ray densitometry in newborns. Pediatrics 1992;90:767–70.Google ScholarPubMed
Faerk, J., Petersen, S., Petersen, B., Michaelsen, K. F.Diet and bone mineral content at term in premature infants. Pediatr. Res. 2000;47:148–56.CrossRefGoogle ScholarPubMed
Lapillonne, A., Braillon, P., Chatelain, P. G., Delams, P. D., Salle, B. L.Body composition in appropriate and in small for gestational age infants. Acta Paediatr. 1997;86:196–200.CrossRefGoogle ScholarPubMed
Bronner, F., Salle, B. L., Putet, G., Rigo, J., Senterre, J.Net calcium absorption in premature infants: results of 103 metabolic balance studies. Am. J. Clin. Nutr. 1992;56:1037–44.CrossRefGoogle ScholarPubMed
Koo, W. W., Bush, A. J., Walters, J., Carlson, S. E.Postnatal development of bone mineral status during infancy. J. Am. Coll. Nutr. 1998;17:65–70.CrossRefGoogle ScholarPubMed
Spady, D. W., Filipow, L. J., Overton, T. R., Szymanski, W. A.Measurement of total body potassium in premature infants by means of a whole-body counter. J. Pediatr. Gastroenterol. Nutr. 1986;5:750–5.CrossRefGoogle ScholarPubMed
Tang, W., Modi, N., Clark, P.Dilution kinetics of H218O for the measurement of total body water in preterm babies in the first week after birth. Arch. Dis. Child. 1993;69:28–31.CrossRefGoogle Scholar
Tang, W., Ridout, D., Modi, N.Assessment of total body water using bioelectrical impedance analysis in neonates receiving intensive care. Arch. Dis. Child. 1997;77:123–6.CrossRefGoogle ScholarPubMed
Bruin, N. C., Velthoven, K. A. M., Ridder, M.et al.Standards for total body fat and fat-free mass in infants. Arch. Dis. Child. 1996;74:386–99.CrossRefGoogle ScholarPubMed
Fusch, C., Slotboom, J., Fuehrer, U.et al.Neonatal body composition: dual-energy x-ray absorptiometry, magnetic resonance imaging, and three-dimensional chemical shift imaging versus chemical analysis in piglets. Pediatr. Res. 1999;46:465–73.CrossRefGoogle ScholarPubMed
Putet, G., Salle, L., Rigo, J., Senterre, J.Nutrient balance, energy utilization, and composition of weight gain in very-low-birth-weight infants fed pooled human milk or a preterm formula. J. Pediatr. 1984;105:79–85.CrossRefGoogle ScholarPubMed
Putet, G., Salle, L., Rigo, J., Senterre, J.Supplementation of pooled human milk with casein hydrolysate: energy and nitrogen balance and weight gain composition in very-low-birth-weight infants. Pediatr. Res. 1987;21:458–61.CrossRefGoogle ScholarPubMed
Picaud, J. C., Rigo, J., Nyamugabo, K., Milet, J., Senterre, J.Evaluation of dual energy x-ray absorptiometry (dual-energy x-ray absorptiometry) for body composition assessment in piglets and term human neonates. Am. J. Clin. Nutr. 1996;63:157–63.CrossRefGoogle ScholarPubMed
Koo, W. W. K., Walters, J., Bush, A. J., Chesney, R. W., Carlson, S. E.Dual-energy-x-ray absorptiometry studies of bone mineral status in newborn infants. J. Bone. Min. Res. 1996;11:997–1002.CrossRefGoogle ScholarPubMed
Rigo, J., Nyamugabo, K., Picaud, J. C.et al.Reference values of body composition obtained by dual energy x-ray absorptiometry in preterm and term neonates. J. Pediatr. Gastroenterol. Nutr. 1998;27:184–90.CrossRefGoogle ScholarPubMed
Cooke, R. J., McCormick, K., Griffin, I. J.et al.Feeding preterm infants after hospital discharge: effect of diet on body composition. Pediatr. Res. 1999;46:461–4.CrossRefGoogle ScholarPubMed
Rigo, J., De Curtis, M., Nyamugabo, K. et al. Premature bone. In Bonjour, J. P., Tsang, R. C., eds. Nutrition and Bone. Nestlé Nutrition Workshop Series, V 41. New York: Raven Press; 1998:83–98.Google Scholar
Salle, B. L., Braillon, P., Glorieux, F. H.et al.Lumbar bone mineral content measured by dual energy X-ray absorptiometry in newborns and infants. Acta Paediatr. 1992;81:953–8.CrossRefGoogle ScholarPubMed
Molgaard, C., Thomsen, B. L., Prentice, A., Cole, T. J.Whole-body bone mineral content in healthy children and adolescents. Arch. Dis. Child. 1997;76:9–15.CrossRefGoogle ScholarPubMed
Rigo, J., Curtis, M., Pieltain, C.et al.Bone mineral metabolism in the micropremie. Clin Perinatol. 2000;27:147–70.CrossRefGoogle ScholarPubMed
Hogler, W., Briody, J., Woodhead, H. J., Chan, A., Cowell, C. T.Importance of lean mass in the interpretation of total body densitometry in children and adolescents. J. Pediatr. 2003;143:81–8.CrossRefGoogle ScholarPubMed
Usher, R., McLean, F.Intrauterine growth of liveborn Caucasian infants at sea level: standard obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J. Pediatr. 1969;74:901–10.CrossRefGoogle Scholar
Koo, W. W. K., Hammami, M., Hockman, E. M.Validation of bone mass and body composition measurements in small subjects with pencil beam dual energy x-ray absorptiometry. J. Am. Coll. Nutr. 2004;23:79–84.CrossRefGoogle ScholarPubMed
Foldes, A. J., Rimon, A., Keinan, D. D., Popovtzer, M. M.Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 1995;17:363–7.CrossRefGoogle ScholarPubMed
Nemet, D., Dolfin, T., Wolach, B., Eliakim, A.Quantitative ultrasound measurements of bone speed of sound in premature infants. Eur. J. Pediatr. 2001;160:737–40.CrossRefGoogle ScholarPubMed
Litmanovitz, I., Dolfin, T., Friedland, O.et al.Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 2003;112:15–19.CrossRefGoogle ScholarPubMed
Rubinacci, A., Moro, G. E., Boehm, G.et al.Quantitative ultrasound for the assessment of osteopenia in preterm infants. Eur. J. Endocrinol. 2003;14:307–15.CrossRefGoogle Scholar
Foldes, A. J., Rimon, A., Keinan, D. D., Popovitzer, M. M.Quantitative ultrasound of the tibia: a novel approach for assessment of bone status. Bone 1995;17:363–77.CrossRefGoogle ScholarPubMed
Kang, C., Speller, R.Comparison of ultrasound and dual energy X-ray absorptiometry measurements in the calcaneus. Br. J. Radiol. 1998;56:861–7.CrossRefGoogle Scholar
Prins, S. H., Jorgensen, H. L., Hassager, C.The role of quantitative ultrasound in the assessment of bone: a review. Clin. Physiol. 1998;18:3–17.CrossRefGoogle ScholarPubMed
Pearce, S., Hurtig, M. B., Runciman, J., Dickey, J.Effect of age, anatomic site and soft tissue on quantitative ultrasound. J. Bone Miner. Res. 2000;15:S407.Google Scholar
Litmanovitz, I., Dolfin, T., Regev, R.et al.Bone turnover markers and bone strength during the first weeks of life in very low birth weight premature infants. J. Perinat. Med. 2004;32:58–61.CrossRefGoogle ScholarPubMed
Nemet, D., Dolfin, T., Litmanowitz, I.et al.Evidence for exercise-induced bone formation in premature infants. Int. J. Sports Med. 2002;23:82–5.CrossRefGoogle ScholarPubMed
Kornak, W., Mundlos, S.Genetic disorders of the skeleton: a developmental approach. Am. J. Hum. Genet. 2003;73:447–74.CrossRefGoogle ScholarPubMed
Whyte, M. P.Hypophosphatasia and the role of alkaline phosphatase in skeletal mineralization. Endocr. Rev. 1994;15:439–61.Google ScholarPubMed
Ward, W. E., Atkinson, S. A., Donovan, S., Paes, B.Bone metabolism and circulating IGF-1 and insulin-like growth factor binding proteins in dexamethasone-treated preterm infants. Early Hum. Dev. 1999;56:127–41.CrossRefGoogle ScholarPubMed
Bernstein, C. N., Leslie, W. D.The pathophysiology of bone disease in gastrointestinal disease. Eur. J. Gastroenterol. Hepatol. 2003;15:857–64.CrossRefGoogle ScholarPubMed
Bachrach, L., Guido, D., Katzman, D., Litt, I., Marcus, R.Decreased bone density in adolescent girls with anorexia nervosa. Pediatrics 1990;86:440–7.Google ScholarPubMed
Allen, D. B.Growth suppression by glucocorticoid therapy. Endocrinol. Metab. Clin. N. Am. 1996;25:699–717.CrossRefGoogle ScholarPubMed
Kruse, K., Busse, M., Kracht, U., Kruse, U., Wohlfart, K.Disorders of calcium and bone metabolism in glucocorticoid treatment. Monatsschr Kinderheilkd. 1988;136:237–42.Google ScholarPubMed
Jux, C., Leiber, K., Hugel, U.et al.Dexamethasone impairs growth hormone (growth hormone)-stimulated growth by suppression of local insulin-like growth factor (IGF)-I production and expression of growth hormone- and IGF-I-receptor in cultured rat chondrocytes. Endocrinology 1998;139:3296–305.CrossRefGoogle ScholarPubMed
Weiler, H., Wang, Z., Atkinson, S.Dexamethasone treatment impairs calcium regulation and reduces bone mineralization in infant pigs. Am. J. Clin. Nutr. 1995;61:805–11.CrossRefGoogle ScholarPubMed
Crofton, P. M., Shrivastava, A., Wade, J. C.et al.Effects of dexamethasone treatment on bone and collagen turnover in preterm infants with chronic lung disease. Pediatr. Res. 2000; 48:155–62.CrossRefGoogle Scholar
Saarela, T., Risteli, J., Koivisto, M.Effects of short-term dexamethasone treatment on collagen synthesis and degradation markers in preterm infants with developing lung disease. Acta Paediatr. 2003;92:588–94.CrossRefGoogle ScholarPubMed
Ekenstam, E., Stalenheim, G., Hallgren, R.The acute effect of high dose corticosteroid treatment on serum osteocalcin. Metabolism 1988;37:141–4.CrossRefGoogle ScholarPubMed
Cranefield, D. J., Odd, D. E., Harding, J. E., Teele, R. L.High incidence of nephrocalcinosis in extremely preterm infants treated with dexamethasone. Pediatr. Radiol. 2004;34:138–42.CrossRefGoogle ScholarPubMed
Takeshita, N., Seino, Y., Ishida, H.et al.Increased circulating levels of gamma-carboxyglutamic acid-containing protein and decreased bone mass in children on anticonvulsant therapy. Calcif. Tissue Int. 1989;44:80–5.CrossRefGoogle ScholarPubMed
Matsuda, I., Higashi, A., Inotsume, N.Physiologic and metabolic aspects of anticonvulsants. Pediatr. Clin. N. Am. 1989;36:1099–11.CrossRefGoogle ScholarPubMed
Robson, H.Bone growth mechanisms and the effects of cytotoxic drugs. Arch. Dis. Child. 1999;81:360–4.CrossRefGoogle ScholarPubMed
Szulc, P., Seeman, E., Delmas, P. D.Biochemical measurements of bone turnover in children and adolescents. Osteoporos. Int. 2000;11:281–94.CrossRefGoogle ScholarPubMed
Levine, M. A.Biochemical markers of bone metabolism: application to understanding bone remodeling in children and adolescents. J. Pediatr. Endocrinol. Metab. 2003;16:661–72.Google ScholarPubMed
Kent, N. G.Markers of bone turnover. J. Int. Fed. Clin. Chem. 1997;9:31–5.Google Scholar
Watts, N. B.Clinical utility of biochemical markers of bone remodeling. Clin. Chem. 1999;45:1359–68.Google ScholarPubMed
Delmas, P.Biochemical markers of bone turnover for the clinical assessment of metabolic bone disease. Endocrinol. Metab. Clin. N. Am. 1990;19:1–18.Google ScholarPubMed
Deftos, L.Bone protein and peptide assays in the diagnosis and management of skeletal disease. Clin. Chem. 1991;37:1143–48.Google ScholarPubMed
Garnero, P., Grimaux, M., Demiaux, B.et al.Measurement of serum osteocalcin with a human-specific two-site immunoradiometric assay. J. Bone. Min. Res. 1992;7:1389–98.CrossRefGoogle ScholarPubMed
Ritter, N., Farach-Carson, M., Butler, W.Evidence for the formation of a complex between osteopontin and osteocalcin. J. Bone. Min. Res. 1992;7:877–85.CrossRefGoogle ScholarPubMed
Michaelsen, K., Johansen, J., Samuelson, G., Price, P., Christiansen, C.Serum bone gamma-carboxyglutamic acid protein in a longitudinal study of infants: lower values in formula-fed infants. Pediatr. Res. 1992;31:401–5.CrossRefGoogle Scholar
Hassager, C., Risteli, J., Risteli, L., Jensen, S., Christiansen, C.Diurnal variation in serum markers of type I collagen synthesis and degradation in healthy premenopausal women. J. Bone Min. Res. 1992;7:1307–11.CrossRefGoogle ScholarPubMed
Kanbur, N. O., Derman, O., Sen, T. A., Kinik, E.Osteocalcin. A biochemical marker of bone turnover during puberty. Int. J. Adolesc. Med. Health. 2002;14:235–44.CrossRefGoogle ScholarPubMed
Ebeling, P., Peterson, J., Riggs, B.Utility of type I procollagen propeptide assays for assessing abnormalities in metabolic bone diseases. J. Bone. Min. Res. 1992;7:1243–50.CrossRefGoogle ScholarPubMed
Hassager, C., Jensen, L., Johansen, J.et al.The carboxy-terminal propeptide of type I procollagen in serum as a marker of bone formation: the effect of nandrolone decanoate and female sex hormones. Metabolism 1991;40:205–8.CrossRefGoogle ScholarPubMed
Allen, S., Nuttleman, P., Ketcham, C., Roberts, R.Purification and characterization of human bone tartrate-resistant acid phosphatase. J. Bone. Min. Res. 1989;4:47–55.CrossRefGoogle ScholarPubMed
Uebelhart, D., Gineyts, E., Chapuy, M., Delmas, P.Urinary excretion of pyridinium crosslinks: a new marker of bone resorption in metabolic bone disease. Bone Miner. 1990;8:87–96.CrossRefGoogle ScholarPubMed
Body, J., Delmas, P.Urinary pyridinium cross-links as markers of bone resorption in tumor-associated hypercalcemia. J. Clin. Endocrinol. Metab. 1992;74:471–5.Google ScholarPubMed
Seibel, M., Robins, S., Bilezikian, J.Urinary pyridinium crosslinks of collagen. Specific markers of bone resorption in metabolic bone disease trends. J. Clin. Endocrinol. Metab. 1992;3:263–70.Google Scholar
Hanson, D., Weis, M., Bollen, A.et al.A specific immunoassay for monitoring human bone resorption: Quantitation of type I collagen cross-linked N-telopeptides in urine. J. Bone. Min. Res. 1992;7:1251–58.CrossRefGoogle ScholarPubMed
Demarini, S., Specker, B. L., Sierra, R. I., Miodovnik, M., Tsang, R. C.Evidence of increased intrauterine bone resorption in term infants of mothers with insulin-dependent diabetes. J. Pediatr. 1995;126:796–8.CrossRefGoogle ScholarPubMed
Pratico, G., Caltabiano, L., Palano, G. M., Zingale, A.Normal levels of collagen-type-I telopeptide in the first 90 days of life. Pediatr. Med. Chir. 1998;20:193–5.Google ScholarPubMed
Sluis, I. M., Ridder, M. A., Boot, A. M.et al.Reference data for bone density and body composition measured with dual energy x-ray absorptiometry in white children and young adults. Arch. Dis. Child. 2002;87:341–7.CrossRefGoogle ScholarPubMed
Koo, W. W., Wispe, Krug S. K., Succop, P.et al.Urinary hydroxyproline in infants with and without fractures/rickets. Clin. Chem. 1990;36:642–4.Google ScholarPubMed
Pittard, W. B. 3rd, Geddes, K. M., Hulsey, T. C., Hollis, B. W.Osteocalcin, skeletal alkaline phosphatase, and bone mineral content in very low birth weight infants: a longitudinal assessment. Pediatr. Res. 1992;31:181–5.CrossRefGoogle ScholarPubMed
Kajantie, E., Dunkel, L., Risteli, J., Pohjavuori, M., Andersson, S.Markers of type I and III collagen turnover as indicators of growth velocity in very low birth weight infants. J. Clin. Endocrinol. Metab. 2001;86:4299–306.CrossRefGoogle ScholarPubMed
Ogueh, O., Khastgir, G., Studd, J.et al.The relationship of fetal serum markers of bone metabolism to gestational age. Early Hum. Dev. 1998;51:109–12.CrossRefGoogle ScholarPubMed
Hytinantti, T., Rutanen, E. M., Turpeinen, M., Sorva, R., Andersson, S.Markers of collagen metabolism and insulin-like growth factor binding protein-1 in term infants. Arch. Dis. Child. Fetal Neonat. Ed. 2000;83:F17–20.CrossRefGoogle ScholarPubMed
Mora, S., Prinster, C., Bellini, A.et al.Bone turnover in neonates: changes of urinary excretion rate of collagen type I cross-linked peptides during the first days of life and influence of gestational age. Bone 1997;20:563–6.CrossRefGoogle ScholarPubMed
Tsukahara, H., Watanabe, Y., Hirano, S.et al.Assessment of bone turnover in term and preterm newborns at birth: measurement of urinary collagen crosslink excretion. Early Hum. Dev. 1999;53:185–91.CrossRefGoogle ScholarPubMed
Seibold-Weiger, K., Wollmann, H. A., Ranke, M. B., Speer, C. P.Plasma concentrations of the carboxyterminal propeptide of type I procollagen (C-terminal propeptide type I) in preterm neonates from birth to term. Pediatr. Res. 2000;48:104–8.CrossRefGoogle Scholar
Harrast, S. D., Kalkwarf, H. J.Effects of gestational age, maternal diabetes, and intrauterine growth retardation on markers of fetal bone turnover in amniotic fluid. Calcif. Tissue. Int. 1998;62:205–8.CrossRefGoogle ScholarPubMed
Ogueh, O., Khastgir, G., Studd, J.et al.Maternal and fetal plasma levels of markers of bone metabolism in gestational diabetic pregnancies. Early Hum. Dev. 1998;53:155–61.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C., Sierra, R. I., Ho, M. L.Normal serum indices of bone collagen biosynthesis and degradation in small for gestational age infants. J. Pediatr. Gastroenterol. Nutr. 1996;23:224–8.CrossRefGoogle ScholarPubMed
Yamaga, A., Taga, M., Minaguchi, H.Changes in urinary excretions of C-telopeptide and cross-linked N-telopeptide of type I collagen during pregnancy and puerperium. Endocr. J. 1997;44:733–8.CrossRefGoogle ScholarPubMed
Yamaga, A., Taga, M., Hashimoto, S., Ota, C.Comparison of bone metabolic markers between maternal and cord blood. Horm. Res. 1999;51:277–9.Google ScholarPubMed
Yasumizu, T., Kato, J.Concentrations of serum markers of type I collagen synthesis and degradation and serum osteocalcin in maternal and umbilical circulation. Endocr. J. 1996;43:191–5.CrossRefGoogle ScholarPubMed
Crofton, P. M., Shrivastava, A., Wade, J. C.et al.Bone and collagen markers in pretrem infants: relationship with growth and bone mineral content over the first 10 weeks of life. Pediatr. Res. 1999;46:581–7.CrossRefGoogle Scholar
Lund, A. M., Hansen, M., Kollerup, G.et al.Collagen-derived markers of bone metabolism in osteogenesis imperfecta. Acta Paediatr. 1998;87:1131–37.CrossRefGoogle ScholarPubMed
Shiff, Y., Eliakim, A., Shainkin-Kestenbaum, R.et al.Measurements of bone turnover markers in premature infants. J. Pediatr. Endocrinol. Metab. 2001;14:389–95.CrossRefGoogle ScholarPubMed
Lapillonne, A., Travers, R., DiMaio, M., Salle, B. L., Glorieux, F. H.Urinary excretion of cross-linked N-telopeptides of type 1 collagen to assess bone resorption in infants from birth to 1 year of age. Pediatrics 2002;110:105–9.CrossRefGoogle ScholarPubMed
Whipple, T., Sharkey, N., Demers, L., Williams, N.Leptin and the skeleton. Clin. Endocrinol. (Oxf). 2002;57:701–11.CrossRefGoogle ScholarPubMed
Hassink, S. G., Lancey, E., Sheslow, D. V.et al.Placental leptin: an important new growth factor in intrauterine and neonatal development?Pediatrics 1997;100:E1.CrossRefGoogle ScholarPubMed
Matsuda, J., Yokota, I., Iida, M.et al.Dynamic changes in serum leptin concentrations during the fetal and neonatal periods. Pediatr. Res. 1999:45:71–5.CrossRefGoogle ScholarPubMed
Ogueh, O., Sooranna, S., Nicolaides, K. H., Johnson, M. R.The relationship between leptin concentration and bone metabolism in the human fetus. J. Clin. Endocrinol. Metab. 2000;85:1997–9.CrossRefGoogle ScholarPubMed
Furmaga-Jablonska, W., Kulik-Rechberger, B., Kozlowska, M.Association between leptin, markers of bone formation and physical growth of newborns. Ann. Hum. Biol. 2003;30:250–61.CrossRefGoogle ScholarPubMed
Fares, J. E., Choucair, M., Nabulsi, M.et al.Effect of gender, puberty, and vitamin D status on biochemical markers of bone remodeling. Bone 2003;33:242–7.CrossRefGoogle Scholar
Bini, V., Baroncelli, Igli G., Papi, F.et al.Relationships of serum leptin levels with biochemical markers of bone turnover and with growth factors in normal weight and overweight children. Horm. Res. 2004;61:170–5.Google ScholarPubMed
Sorva, R., Anttila, R., Siimes, M. A.et al.Serum markers of collagen metabolism and serum osteocalcin in relation to pubertal development in 57 boys at 14 years of age. Pediatr. Res. 1997;42:528–32.CrossRefGoogle ScholarPubMed
Anim-Nyame, N., Sooranna, S. R., Jones, J.et al.Biochemical markers of maternal bone turnover are elevated in pre-eclampsia. Br. J. Obstet. Gynaecol. 2001;108:258–62.Google ScholarPubMed
Vrotsos, Y., Miller, S. C., Marks, S. C. Jr.Prostaglandin E – a powerful anabolic agent for generalized or site-specific bone formation. Crit. Rev. Eukaryot. Gene Expr. 2003;13:255–63.CrossRefGoogle ScholarPubMed
Canalis, E., McCarthy, T., Centrella, M.The role of growth factors in skeletal remodeling. Endocrinol. Metab. Clin. N. Am. 1989;18:903–18.Google ScholarPubMed
Jones, J. I., Clemmons, D. R.Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 1995;16:3–34.Google ScholarPubMed
Canalis, E.Effect of insulin-like growth factor I on DNA and protein synthesis in cultured rat calvaria. J. Clin. Invest. 1980;66:709–19.CrossRefGoogle Scholar
Canalis, E. Regulation of bone remodeling. In Favus, M. J., ed. Primer on the metabolic bone diseases and disorders of mineral metabolism. New York: Raven Press;1993:33–7.Google Scholar
Yano, H., Ohya, K., Amajasa, T.Effects of insulin on in vitro bone formation in fetal rat perinatal bone. Endocr. J. 1994;41:293–300.CrossRefGoogle Scholar
Canalis, E., Centrella, M., Burch, W., McCarthy, T.Insulin-like growth factor I mediates selective anabolic effects of parathyroid hormone in bone cultures. J. Clin. Invest. 1989;83:60–5.CrossRefGoogle ScholarPubMed
Chenu, C., Valentin-Opran, A., Chavassieux, P.et al.Insulin growth factor I hormonal regulation by growth hormone and by 1,25-(OH)2D3 and activity on human osteoblast-like cells in short-term cultures. Bone 1990;11:81–6.CrossRefGoogle ScholarPubMed
Wong, G., Kotliar, D., Schlaeger, D., Brandes, S.IGF-I production by mouse osteoblasts. J. Bone. Min. Res. 1990;5:133–40.CrossRefGoogle ScholarPubMed
Scheven, B., Damen, C., Hamilton, N., Verhaar, H., Duursma, S.Stimulatory effects of estrogen and progesterone on proliferation and differentiation of normal human osteoblast-like cells in vitro. Biochem. Biophys. Res. Commun. 1992;186:54–60.CrossRefGoogle ScholarPubMed
Zaidi, M., Moonga, B. S., Abe, E.Calcitonin and bone formation: a knockout full of surprises. J. Clin. Invest. 2002;110:1769–71.CrossRefGoogle ScholarPubMed
Mosekilde, L., Eriksen, E., Charles, P.Effects of thyroid hormones on bone and mineral metabolism. Endocrinol. Metab. Clin. N. Am. 1990;19:35–63.Google Scholar
Soskolne, W., Schwartz, Z., Goldstein, M., Ornoy, A.The biphasic effect of triiodothyronine compared to bone resorbing effect of parathyroid hormone on bone modelling of mouse long bone in vitro. Bone 1990;11:301–7.CrossRefGoogle Scholar
Ongphiphadhanakul, B., Alex, S., Braverman, L., Baran, D.Excessive L-Thyroxine therapy decreases femoral bone mineral densities in the male rat: effect of hypogonadism and calcitonin. J. Bone. Min. Res. 1992;7:1227–31.CrossRefGoogle ScholarPubMed
Oreffo, R., Teti, A., Francis, M., Carano, A., Zallone, A.Effect of vitamin A on bone resorption: evidence for direct stimulation of isolated chicken osteoclasts by retinol and retinoic acid. J. Bone. Min. Res. 1988;3:203–10.CrossRefGoogle Scholar
Troen, B. R.The role of cathepsin K in normal bone resorption. Drug News Perspect. 2004; 17:19–28.CrossRefGoogle ScholarPubMed
Hamrick, M. W., Pennington, C., Newton, D., Xie, D., Isales, C.Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004;34:376–83.CrossRefGoogle ScholarPubMed
Elefteriou, F., Takeda, S., Ebihara, K.et al.Serum leptin level is a regulator of bone mass. Proc. Natl. Acad. Sci. USA. 2004;101:3258–63.CrossRefGoogle ScholarPubMed
Nakajima, R., Inada, H., Koike, T., Yamano, T.Effects of leptin to cultured growth plate chondrocytes. Horm. Res. 2003;60:91–8.Google ScholarPubMed
Gat-Yablonski, G., Ben-Ari, T., Shtaif, B.et al.Leptin reverses the inhibitory effect of caloric restriction on longitudinal growth. Endocrinology 2004;145:343–50.CrossRefGoogle ScholarPubMed
Matkovic, V.Calcium intake and peak bone mass. N. Engl. J. Med. 1992;327:119–20.CrossRefGoogle ScholarPubMed
Sentipal, J., Wardlaw, G., Mahan, J., Matkovic, V.Influence of calcium intake and growth indexes on vertebral bone mineral density in young females. Am. J. Clin. Nutr. 1991;54:425–8.CrossRefGoogle ScholarPubMed
Recker, R., Davies, K., Hinders, S.et al.Bone gain in young adult women. J. Am. Med. Assoc. 1992;268:2403–8.CrossRefGoogle ScholarPubMed
Altenahr, E., Wohler, J.Ultrastrukturell untersuchungen zur funktionellen epithelkorperchen-differenzierung wahrend der embryanal-fetal- und neonatal-periode. Verh. Dtsch. Ges. Pathol. 1971;55:160–6.Google Scholar
Stoeckel, M., Porte, A.Observations ultrastructurales sur la parathyroide de mammifere et d'oiseau dans les conditions normales et experimentales. Arch. Anat. Microsc. Morphol. Exp. 1973;62:55–88.Google Scholar
Leroyer-Alizon, E., David, L., Anast, C., Dubois, P.Immunocytological evidence for parathyroid hormone in human parathyroid glands. J. Clin. Endocrinol. Metab. 1981;52:513–16.CrossRefGoogle Scholar
Brown, E. M.Calcium receptor and regulation of parathyroid hormone secretion. Rev. Endocr. Metab. Disord. 2000;1:307–15.CrossRefGoogle ScholarPubMed
Brown, E. M., MacLeod, R. J.Extracellular calcium sensing and extracellular calcium signaling. Physiol. Rev. 2001;81:239–97.CrossRefGoogle ScholarPubMed
Brown, E. M., Gamba, G., Riccardi, D.et al.Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993;366:575–80.CrossRefGoogle ScholarPubMed
Raisz, L. G.The hunting of the snark: the elusive calcium receptor(s). J. Clin. Invest. 2003; 111:945–7.CrossRefGoogle Scholar
Buckle, R., Care, A., Cooper, C.The influence of plasma magnesium concentration on parathyroid hormone secretion. J. Endocrinol. 1968;42:529–34.CrossRefGoogle ScholarPubMed
Suh, S., Tashjian, A. Jr., Matsuo, N.et al.Pathogenesis of hypocalcemia in primary hypomagnesemia: Normal end-organ responsiveness to parathyroid hormone, impaired gland function. J. Clin. Invest. 1973;52:153–60.CrossRefGoogle ScholarPubMed
MacManus, J., Heaton, F., Lucas, P.A decreased response to parathyroid hormone in magnesium deficiency. J. Endocrinol. 1971;49:253–8.CrossRefGoogle ScholarPubMed
Freitag, J., Martin, K., Conrades, M.et al.Evidence for skeletal resistance to parathyroid hormone in magnesium deficiency. J. Clin. Invest. 1979;64:1238–44.CrossRefGoogle ScholarPubMed
Anast, C., Mohs, J., Kaplan, S., Burns, T.Evidence for parathyroid failure in magnesium deficiency. Science 1972;177:606–8.CrossRefGoogle ScholarPubMed
Anast, C., Winnacker, J., Forte, L., Burns, T.Impaired release of parathyroid hormone in magnesium deficiency. J. Clin. Endocrinol. Metab. 1976;42:707–17.CrossRefGoogle ScholarPubMed
Massry, S. G., Coburn, J. W., Kleeman, C. R.Evidence for suppression of parathyroid gland activity by hypermagnesemia. J. Clin. Invest. 1970;49:1619–29.CrossRefGoogle ScholarPubMed
Cholst, I., Steinberg, S., Tropper, P.et al.The influence of hypermagnesemia on serum calcium and parathyroid hormone levels. N. Engl. J. Med. 1984;301:1221–5.CrossRefGoogle Scholar
Morrissey, J., Slatopolsky, E.Effect of aluminum on parathyroid hormone secretion. Kidney Int. 1986;29:41–4.Google Scholar
Mundy, G., Roodman, G. Osteoclast ontogeny and function. In Peck, W., ed. Bone and Mineral Research. Amsterdam: Elsevier; 1987:209–80.Google Scholar
Mundy, G. R., Guise, T. A.Hormonal control of calcium homeostasis. Clin. Chem. 1999;45:1347–52.Google ScholarPubMed
Hock, J. M., Gera, I.Effects of continuous and intermittent administration and inhibition of resorption on the anabolic response of bone to parathyroid hormone. J. Bone. Min. Res. 1992;7:65–72.CrossRefGoogle ScholarPubMed
Strewler, G. J.The physiology of parathyroid hormone-related protein. N. Engl. J. Med. 2000; 342:177–85.CrossRefGoogle ScholarPubMed
Kukreja, S., Shevrin, D., Wimbidcus, S.et al.Antibodies to parathyroid hormone-related protein lower serum calcium in athymic mouse models of malignancy-associated hypercalcemia due to human tumors. J. Clin. Invest. 1988;82:1798–1802.CrossRefGoogle ScholarPubMed
Broadus, A., Mangin, M., Ikeda, K.et al.Humoral hypercalcemia of cancer: identification of a novel parathyroid hormone-like peptide. N. Engl. J. Med. 1988;319:556–63.Google ScholarPubMed
Wysolmerski, J. J., Broadus, A. E.Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Annu. Rev. Med. 1994:45:189–200.CrossRefGoogle ScholarPubMed
Loveridge, N., Dean, V., Goltzman, D., Hendy, G.Bioactivity of parathyroid hormone and parathyroid hormone-like peptide: agonist and antagonist activities of amino-terminal fragments as assessed by the cytochemical bioassay and in situ biochemistry. Endocrinology 1991;128:1938–46.CrossRefGoogle ScholarPubMed
Bergmann, P., Wolf, Nijs N., Pepersack, T., Corvilain, J.Release of parathyroid hormone-like peptides by fetal rat long bones in culture. J. Bone Miner. Res. 1990;5:741–53.CrossRefGoogle Scholar
Ballock, T. R., O'Keefe, R. J.The biology of the growth plate. J. Bone. Joint. Surg. Am. 2003;85:715–26.CrossRefGoogle ScholarPubMed
Ballock, R. T., O'Keefe, R. J.Physiology and pathophysiology of the growth plate. Birth Defects Res. Part C Embryo Today 2003;69:123–43.CrossRefGoogle ScholarPubMed
Schipani, E., Provot, S.parathyroid hormonerP, PTH, and the PTH/PTHrP receptor in endochondral bone development. Birth Defects Res. Part C Embryo Today 2003;69:352–62.CrossRefGoogle ScholarPubMed
Raisz, L., Simmons, H. A., Vargas, S. J., Kemp, B. E., Martin, T. J.Comparison of the effects of amino-terminal synthetic parathyroid hormone-related peptide (parathyroid hormonerP) of malignancy and parathyroid hormone on resorption of cultured fetal rat long bones. Calcif. Tissue. Int. 1990;46:233–8.CrossRefGoogle ScholarPubMed
Rosol, T., Capen, C., Horst, R.Effects of infusion of human parathyroid hormone-related protein-(1–40) in nude mice: histomorphometric and biochemical investigations. J. Bone Min. Res. 1988;3:699–706.CrossRefGoogle ScholarPubMed
Karaplis, A. C., Luz, A., Glowacki, J.et al.Lethal skeletal dysplasia from targeted disruption of the parathyroid hormone-related peptide gene. Genes Dev. 1994;8:277–89.CrossRefGoogle ScholarPubMed
Yamanaka, Y., Ueda, K., Seino, Y., Tanaka, H.Molecular basis for the treatment of achondroplasia. Horm. Res. 2003;60:60–4.Google ScholarPubMed
Thiede, M., Daifotis, A., Weir, E.et al.Intrauterine occupancy controls expression of the parathyroid hormone-related peptide gene in preterm rat myometrium. Proc. Natl. Acad. Sci. USA. 1990;87:6969–73.CrossRefGoogle ScholarPubMed
Moniz, C., Burton, P., Malik, A.et al.Parathyroid hormone-related peptide in normal human fetal development. J. Mol. Endocrinol. 1990;5:259–66.CrossRefGoogle ScholarPubMed
Moseley, J., Hayman, J., Danks, J.et al.Immunohistochemical detection of parathyroid hormone-related protein in human fetal epithelia. J. Clin. Endocrinol. Metab. 1991;73:478–84.CrossRefGoogle ScholarPubMed
Thiede, M., Rodan, G.Expression of a calcium-mobilizing parathyroid hormone-like peptide in lactating mammary tissue. Science 1988;242:278–80.CrossRefGoogle ScholarPubMed
Budayr, A., Halloran, B., King, J.et al.High levels of a parathyroid hormone-like protein in milk. Proc. Natl. Acad. Sci. USA 1989;86:7183–85.CrossRefGoogle ScholarPubMed
Burtis, W., Brady, T., Orloff, J.et al.Immunochemical characterization of circulating parathyroid hormone-related protein in patients with humoral hypercalcemia of cancer. N. Engl. J. Med. 1990;322:1106–12.CrossRefGoogle Scholar
Khosla, S., Johansen, K. L., Ory, S. J., , O'Brien P. C., Kao, P. C.Parathyroid hormone-related peptide in lactation and umbilical cord. Mayo Clin. Proc. 1990;65:1408–14.CrossRefGoogle ScholarPubMed
Prentice, A.Calcium in pregnancy and lactation. Annu. Rev. Nutr. 2000;20:249–72.CrossRefGoogle ScholarPubMed
Kovacs, C. S., Kronenberg, H. M.Maternal-fetal calcium and bone metabolism during pregnancy, puerperium, and lactation. Endocr. Rev. 1997;18:832–72.Google ScholarPubMed
Sowers, M., Zhang, D., Hollis, B. W.et al.Role of calciotrophic hormones in calcium mobilization of lactation. Am. J. Clin. Nutr. 1998;67:284–91.CrossRefGoogle ScholarPubMed
Sowers, M. F., Hollis, B. W., Shapiro, B.et al.Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. J. Am. Med. Assoc. 1996;276:549–54.CrossRefGoogle ScholarPubMed
Yamamoto, M., Duong, L. T., Fisher, J. E.et al.Suckling-mediated increases in urinary phosphate and 3′,5′-cyclic adenosine monophosphate excretion in lactating rats: possible systemic effects of parathyroid hormone-related protein. Endocrinology 1991;129:2614–22.CrossRefGoogle ScholarPubMed
Ratcliffe, W. A., Thompson, G. E., Care, A. D., Peaker, M.Production of parathyroid hormone-related protein by the mammary gland of the goat. J. Endocrinol. 1992;133:87–93.CrossRefGoogle ScholarPubMed
Lippuner, K., Zehnder, H. J., Casez, J. P., Takkinen, R., Jaeger, P.parathyroid hormone-related protein is released into the mother's bloodstream during location: evidence for beneficial effects on maternal calcium-phosphate metabolism. J. Bone. Min. Res. 1996;11:1394–99.CrossRefGoogle Scholar
Grill, V., Hillary, J., Ho, P. M.et al.Parathyroid hormone-related protein: a possible endocrine function in lactation. Clin. Endocrinol. (Oxf). 1992;37:405–10.CrossRefGoogle ScholarPubMed
Bucht, E., Rong, H., Bremme, K.et al. (1995). Midmolecular parathyroid hormone-related peptide in serum during pregnancy, lactation and in umbilical cord blood. Eur. J. Endocrinol. 1995;132:438–43.CrossRefGoogle ScholarPubMed
Caplan, R. H., Wickus, G. G., Sloane, K., Silva, P. D.Serum parathyroid hormone-related protein levels during lactation. J. Reprod. Med. 1995;40:216–18.Google ScholarPubMed
Dobnig, H., Kainer, F., Stepan, V.et al.Elevated parathyroid hormone-related peptide levels after human gestation: relationship to changes in bone and mineral metabolism. J. Clin. Endocrinol. Metab. 1995;80:3699–707.CrossRefGoogle ScholarPubMed
Anai, T., Tomiyasu, T., Takai, N., Miyakawa, I.Remission of idiopathic hypoparathyroidism during lactation: a case report. J. Obstet. Gynaecol. Res. 1999;25:271–3.CrossRefGoogle ScholarPubMed
Mather, K. J., Chik, C. L., Corenblum, B.Maintenance of serum calcium by parathyroid hormone-related peptide during lactation in a hypoparathyroid patient. J. Clin. Endocrinol. Metab. 1999;84:424–7.CrossRefGoogle Scholar
VanHouten, J., Dann, P., McGeoch, G.et al.The calcium-sensing receptor regulates mammary gland parathyroid hormone-related protein production and calcium transport. J. Clin. Invest. 2004;113:598–608.CrossRefGoogle ScholarPubMed
VanHouten, J. N., Dann, P., Stewart, A. F.et al.Mammary-specific deletion of parathyroid hormone-related protein preserves bone mass during lactation. J. Clin. Invest. 2003;112:1429–36.CrossRefGoogle ScholarPubMed
Deftos, L. Calcitonin secretion in humans. In Cooper, C., ed. Current Research on Calcium Regulating Hormones. Austin TX: University of Texas Press; 1987:79–100.Google Scholar
Cooper, C., Schwesinger, W., Mahgoub, A., Ontjes, D.Thyrocalcitonin stimulation of secretion by pentagastrin. Science 1971;172:1238–40.CrossRefGoogle ScholarPubMed
Roos, B., Deftos, L.Calcitonin secretion in vitro II. Regulating effects of enteric mammalian polypeptide hormones on tract C-cell cultures. Endocrinology 1976;98:1284–8.CrossRefGoogle Scholar
Freake, H., MacIntyre, I.Specific binding of 1,25 dihydroxycholecalciferol in human medullary thyroid carcinoma. Biochem. J. 1982;206:181–4.CrossRefGoogle ScholarPubMed
Nicholson, G., Moseley, J., Sexton, P., Mendelsohn, F., Martin, T.Abundant calcitonin receptors in isolated rat osteoclasts. Biochemical and autoradiographic characterization. J. Clin. Invest. 1986;78:355–9.CrossRefGoogle ScholarPubMed
Raisz, L.Bone metabolism and its hormonal regulation. Triangle 1983;22:81–92.Google Scholar
Deftos, L., Glowacki, J. Mechanisms of bone metabolism. In Kem, D., Frohlich, E., eds. Pathophysiology. Philadelphia, PA: JB Lippincott Co.; 1984:445–68.Google Scholar
Kawashima, H., Torikai, S., Kurokawa, K.Calcitonin selectively stimulates 25-hydroxyvitamin D3-1-hydroxylase in proximal straight tubules of rat kidney. Nature 1981;291:327–9.CrossRefGoogle Scholar
Galante, L., Colston, K., MacAuley, S., MacIntyre, I.Effect of calcitonin on vitamin D metabolism. Nature 1972;238:271–3.CrossRefGoogle ScholarPubMed
Wimalawansa, S. J.Calcitonin gene-related peptide and its receptors: molecular genetics, physiology, pathophysiology, and therapeutic potentials. Endocr. Rev. 1996;17:533–85.CrossRefGoogle ScholarPubMed
Jager, K., Muench, R., Seifert, H.et al.Calcitonin gene-related peptide (CGRP) causes redistribution of blood flow in humans. Eur. J. Clin. Pharmacol. 1990;39:491–4.CrossRefGoogle ScholarPubMed
Lafond, J., St-Pierre, S., Masse, A., Savard, R., Simoneau, L.Calcitonin gene-related peptide receptor in human placental syncytiotrophoblast brush-border and basal plasma membranes. Placenta 1997;18:181–8.CrossRefGoogle ScholarPubMed
Bevis, P. J., Zaidi, M., MacIntyre, I.A dual effect of calcitonin gene-related peptide on plasma calcium levels in the chick. Biochem. Biophys. Res. Commun. 1990;169:846–50.CrossRefGoogle ScholarPubMed
Horst, R. L. Vitamin D metabolism. In Feldman, D., Glorieux, F. H., Pike, Wesley J., eds. Vitamin D. New York: Academic Press; 1997:13–31.Google ScholarPubMed
Luca, H. F., Schnoes, H. K.Vitamin D: recent advances. Annu. Rev. Biochem. 1985;52:411–39.Google Scholar
Clemens, T. L., Holick, M. F. Recent advances in the hormonal regulation of calcium and phosphorus in adult animals and humans. In Holick, M. F., Anast, C. S., Gray, T. K., eds. Perinatal Calcium and Phosphorus Metabolism. Amsterdam: Elsevier; 1983:1–24.Google Scholar
Tojo, R., Pavon, P., Antelo, J.et al.Vitamin D and its metabolites. Advances in the diagnosis and treatment of rickets. Acta Vitaminol. Enzymol. 1982;4:1–11.Google ScholarPubMed
Coburn, J., Slatopolsky, E. Vitamin D, parathyroid hormone, and renal osteodystrophy. In Rector, B., ed. The Kidney. Philadelphia, PA: W. B. Saunders Co; 1986:1657–729.Google Scholar
Bachrach, S.Vitamin D deficiency rickets in American children. Compr. Ther. 1981;7:29–34.Google ScholarPubMed
Felsenfeld, A., Llach, F.Vitamin D and metabolic bone disease: a clinicopathologic overview. Pathol. Annu. 1982;17:383–410.Google ScholarPubMed
Akiba, T., Endou, H., Koseki, C.et al.Localization of 25-hydroxyvitamin D3-1ahydroxylase activity in the mammalian kidney. Biochem. Biophys. Res. Commun. 1980;94:313–18.CrossRefGoogle ScholarPubMed
St-Arnaud, R., Arabian, A., Travers, R.et al.Deficient mineralization of intramembranous bone in vitamin D-24-hydroxylase-ablated mice is due to elevated 1,25-dihydroxyvitamin D and not to the absence of 24,25-dihydroxyvitamin D. Endocrinology 2000;141:2658–66.CrossRefGoogle Scholar
Umeda, F., Inoue, K., Hirano, K.et al.Alterations in femoral bone histomorphometry and vitamin D metabolism in neonatal streptozotocin-induced diabetic rat. Fukuoka Igaku Zasshi. 1992;83:403–8.Google ScholarPubMed
Garabedian, M., Holick, M., DeLuca, H., Boyle, I.Control of 25-hydroxycholecalciferol metabolism by parathyroid glands. Proc. Natl. Acad. Sci. USA 1972;69:1673–6.CrossRefGoogle ScholarPubMed
Nesbitt, T., Drezner, M.Insulin-like growth factor-I regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity. Endocrinology 1993;132:133–8.CrossRefGoogle ScholarPubMed
Chesney, R., Rosen, J., Hamstra, A., DeLuca, H.Serum 1,25-dihydroxyvitamin D levels in normal children and in vitamin D disorders. Am. J. Dis. Child. 1980;134:135–9.Google ScholarPubMed
Armbrecht, H., Forte, L., Halloran, B.Effect of age and dietary calcium on renal 25(OH)D metabolism, serum 1,25(OH)2D and parathyroid hormone. Am. J. Physiol. 1984;246:E266–70.Google Scholar
Ribovich, M., DeLuca, H.The influence of dietary calcium and phosphorus on intestinal calcium transport in rats given vitamin D metabolites. Arch. Biochem. Biophys. 1975;170: 529–35.CrossRefGoogle ScholarPubMed
Lovinger, R.Rickets. Pediatrics 1980;66:359–65.Google ScholarPubMed
Fatemi, S., Ryzen, E., Flores, J., Endres, D., Rude, R.Effect of experimental human magnesium depletion on parathyroid hormone secretion and 1,25-dihydroxyvitamin D metabolism. J. Clin. Endocrinol. Metab. 1991;73:1067–72.CrossRefGoogle Scholar
Saggese, G., Federico, G., Bertelloni, S., Baroncelli, G., Calisti, L.Hypomagnesemia and the parathyroid hormone-vitamin D endocrine system in children with insulin-dependent diabetes mellitus: effects of magnesium administration. J. Pediatr. 1991;118:220–5.CrossRefGoogle ScholarPubMed
Pike, J. The vitamin D receptor and its gene. In Feldman, D., Glorieux, F. H., Pike, Wesley J., eds. Vitamin D. New York: Academic Press;1997:105–25.Google ScholarPubMed
Walling, M.Intestinal calcium and phosphate transport: differential responses to vitamin D3 metabolites. Am. J. Physiol. 1977;233:E488–94.Google ScholarPubMed
Schwartz, Z., Dennis, R., Bonewald, L.et al.Differential regulation of prostaglandin E2 synthesis and phospholipase A2 activity by 1,25-(OH)2D3 in three osteoblast-like cell lines (MC-3T#-E1, ROS 17/2.8, and MG-63). Bone 1992;13:51–8.CrossRefGoogle Scholar
Slatopolsky, E., Weerts, C., Thielan, J.et al.Marked suppression of secondary hyperparathyroidism by intravenous administration of 1,25-dihydroxy- cholecalciferol in uremic patients. J. Clin. Invest. 1984;74:2136–43.CrossRefGoogle ScholarPubMed
Betinelli, A., Bianchi, M., Mazzuchi, E., Gandolini, G., Appiani, A.Acute effects of calcitriol and phosphate salts on mineral metabolism in children with hypophosphatemic rickets. J. Pediatr. 1991;118:372–6.CrossRefGoogle Scholar
Pitkin, R.Calcium metabolism in pregnancy and the perinatal period: a review. Am. J. Obstet. Gynecol. 1985;151:99–109.CrossRefGoogle ScholarPubMed
Salle, B. L., Delvin, E. E., Lapillonne, A., Bishop, N. J., Glorieux, F. H.Perinatal metabolism of vitamin D. Am. J. Clin. Nutr. 2000;71:1317S–24S.CrossRefGoogle ScholarPubMed
Martinez, M. E., Sanchez, C., Salinas, M.et al.Ionic calcium levels during pregnancy, at delivery and in the first hours of life. Scand. J. Clin. Lab. Invest. 1986;46:27–30.CrossRefGoogle Scholar
Allgrove, J., Adami, S., Manning, R., Riordan, O' J.Cytochemical bioassay of parathyroid hormone in maternal and cord blood. Arch. Dis. Child. 1985;60:110–15.CrossRefGoogle ScholarPubMed
Davis, O. K., Hawkins, D. S., Rubin, L. P.et al.Serum parathyroid hormone (parathyroid hormone) in pregnant women determined by an immuno-radiometric assay for intact PRH. J. Clin. Endocrinol. Metab. 1988;67:850–2.CrossRefGoogle Scholar
Gallacher, S. J., Fraser, W. D., Owens, O. J.et al.Changes in calciotrophic hormones and biochemical markers of bone turnover in normal human pregnancy. Eur. J. Endocrinol. 1994;131:369–74.CrossRefGoogle ScholarPubMed
Martinez, M. E., Catalan, P., Lisbona, A.et al.Serum osteocalcin concentrations in diabetic pregnant women and their newborns. Horm. Metab. Res. 1994;26:338–42.CrossRefGoogle ScholarPubMed
Saggese, G., Bertelloni, S., Baroncelli, G. I., Pelletti, A., Benedetti, U.Evaluation of a peptide family encoded by the calcitonin gene in selected healthy pregnant women. A longitudinal study. Horm. Res. 1990;34:240–4.CrossRefGoogle ScholarPubMed
Halhali, A., Wimalawansa, S. J., Berentsen, V.et al.Calcitonin gene- and parathyroid hormone-related peptides in preeclampsia: effects of magnesium sulfate. Obstet. Gynecol. 2001;97:893–7.Google ScholarPubMed
Bouillon, R., Assche, F. A., Baelen, H. V.et al.Influence of the vitamin D-binding protein on the serum concentration of 1,25-dihydroxyvitamin D3: significance of the free 1,25-dihydroxyvitamin D3 concentration. J. Clin. Invest. 1981;67:589–96.CrossRefGoogle Scholar
Delvin, E. E., Glorieux, F. H., Salle, B. L.et al.Control of vitamin D metabolism in preterm infants: feto-maternal relationships. Arch. Dis. Child. 1982;57:754–7.CrossRefGoogle ScholarPubMed
Fleischman, A. R., Rosen, J. F., Cole, J.et al.Maternal and fetal serum 1,25-dihydroxyvitamin D levels at term. J. Pediatr. 1980;97:640–2.CrossRefGoogle ScholarPubMed
Care, A. D. Vitamin D in pregnancy, the fetoplacental unit, and lactation. In Feldman, D., Glorieux, F. H., Pike, Wesley J., eds. Vitamin D. New York:Academic Press;1997:437–43.Google ScholarPubMed
Weisman, Y., Harell, A., Edelstein, D.et al.1,25-Dihydroxyvitamin D3 and 24,25-dihydroxyvitamin D3 in vitro synthesis by human decidua and placenta. Nature 1979;281:317–19.CrossRefGoogle Scholar
Delvin, E. E., Arabian, A., Glorieux, F. H.et al.In vitro metabolism of 25-OH-hydroxycholecalciferol by isolated cells from human decidua. J. Clin. Endocrinol. Metab. 1985;60:880–5.CrossRefGoogle ScholarPubMed
Delvin, E. E., Arabian, A.Kinetics and regulation of 25-hydroxycholecalciferol 1-hydroxylase from cells isolated from human term decidua. Eur. J. Biochem. 1987;163:659–62.CrossRefGoogle Scholar
Ritchie, L. D., Fung, E. B., Halloran, B. P.et al.A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am. J. Clin. Nutr. 1998;67:693–701.CrossRefGoogle ScholarPubMed
Kent, G. N., Price, R. I., Gutteridge, D. H.et al.Human lactation: forearm trabecular bone loss, increased bone turnover, and renal conservation of calcium and inorganic phosphate with recovery of bone mass following weaning. J. Bone Min. Res. 1990;5:361–9.CrossRefGoogle ScholarPubMed
Cross, N. A., Hillman, L. S., Allen, S. H., Krause, G. F., Vieira, N. E.Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am. J. Clin. Nutr. 1995;61:514–23.CrossRefGoogle ScholarPubMed
Prentice, A., Jarjou, L. M. A., Stirling, D. M. S., Buffenstein, R., Fairweather-Tait, S.Biochemical markers of calcium and bone metabolism during 18 months of lactation in Gambian women accustomed to a low calcium intake and in those consuming a calcium supplement. J. Clin. Endocrinol. Metab. 1998;83:1059–66.Google ScholarPubMed
Specker, B., Tsang, R., Ho, M.Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet. Gynecol. 1991;78:56–62.Google ScholarPubMed
Krebs, N. F., Reidinger, C. J., Robertson, A. D., Brenner, M.Bone mineral density changes during lactation: maternal, dietary, and biochemical correlates. Am. J. Clin. Nutr. 1997;65:1738–46.CrossRefGoogle ScholarPubMed
Kalkwarf, H. J.Hormonal and dietary regulation of changes in bone density during lactation and after weaning in women. J. Mammary Gland Biol. Neoplasia 1999;4:319–29.CrossRefGoogle ScholarPubMed
Greer, F. R., Tsang, R. C., Searcy, J. E., Levin, R. S., Steichen, J. J.Mineral homeostasis during lactation – relationship to serum 1,25-dihydroxyvitamin D, 25-hydroxyvitamin D, parathyroid hormone, and calcitonin. Am. J. Clin. Nutr. 1982;36:431–7.CrossRefGoogle ScholarPubMed
Kalkwarf, H. J., Specker, B. L.Bone mineral changes during pregnancy and lactation. Endocrine 2002;17:49–53.CrossRefGoogle ScholarPubMed
Kalkwarf, H. J., Specker, B. L., Heubi, J. E., Vieira, N. E., Yergey, A. L.Intestinal calcium absorption of women during lactation and after weaning. Am. J. Clin. Nutr. 1996;63:526–31.CrossRefGoogle ScholarPubMed
Kalkwarf, H. J., Specker, B. L., Ho, M.Effects of calcium supplementation on calcium homeostasis and bone turnover in lactating women. J. Clin. Endocrinol. Metab. 1999;84:464–70.Google ScholarPubMed
Prentice, A.Micronutrients and the bone mineral content of the mother, fetus and newborn. J. Nutr. 2003;133:1693S–99S.CrossRefGoogle Scholar
Cole, D. E., Gundberg, C. M., Stirk, L. J.et al.Changing osteocalcin concentrations during pregnancy and lactation: implications for maternal mineral metabolism. J. Clin. Endocrinol. Metab. 1987;65:290–4.CrossRefGoogle ScholarPubMed
Rodin, A., Duncan, A., Quartero, H. W. P.et al.Serum concentrations of alkaline phosphatase isoenzymes and osteocalcin in normal pregnancy. J. Clin. Endocrinol. Metab. 1989;68:1123–27.CrossRefGoogle ScholarPubMed
Fukuoka, H., Mukai, S., Kobayashi, Y., Jimbo, T.Dynamic changes in serum osteocalcin levels in the perinatal periods. Nippon Naibunpi Gakkai Zasshi. 1989;65:1116–22.Google ScholarPubMed
Gorzelak, M., Darmochwal-Kolarz, D., Jablonski, M.et al.The concentrations of osteocalcin and degradation products of type I collagen in pregnant women with pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol. 2001;98:23–7.CrossRefGoogle ScholarPubMed
Naylor, K. E., Iqbal, P., Fledelius, C., Fraser, R. B., Eastell, R.The effect of pregnancy on bone density and bone turnover. J. Bone. Min. Res. 2000;15:129–37.CrossRefGoogle Scholar
Seki, K., Makimura, N., Mitsui, C., Hirata, J., Nagata, I.Calcium-regulating hormones and osteocalcin levels during pregnancy: a longitudinal study. Am. J. Obstet. Gynecol. 1991;164:1248–52.CrossRefGoogle ScholarPubMed
Seki, K., Wada, S., Nagata, N., Nagata, I.Parathyroid hormone-related protein during pregnancy and the perinatal period. Gynecol. Obstet. Invest. 1994;37:83–6.CrossRefGoogle ScholarPubMed
More, C., Bhattoa, H. P., Bettembuk, P., Balogh, A.The effects of pregnancy and lactation on hormonal status and biochemical markers of bone turnover. Eur. J. Obstet. Gynecol. Reprod. Biol. 2003;106:209–13.CrossRefGoogle ScholarPubMed
Kovacs, C. S.Calcium and bone metabolism in pregnancy and lactation. J. Clin. Endocrinol. Metab. 2001;86:2344–8.Google ScholarPubMed
Villar, J., Repke, J.Calcium supplementation during pregnancy may reduce preterm delivery in high-risk populations. Am. J. Obstet. Gynecol. 1990;163:1124–31.CrossRefGoogle ScholarPubMed
Repke, J.Calcium, magnesium, and zinc supplementation and perinatal outcome. Clin. Obstet. Gynecol. 1991;34:262–7.CrossRefGoogle ScholarPubMed
Koo, W. W., Walters, J. C., Esterlitz, J.et al.Maternal calcium supplementation and fetal bone mineralization. Obstet. Gynecol. 1999;94:577–82.Google ScholarPubMed
Holmberg-Marttila, D., Leino, A., Sievanen, H.Bone turnover markers during lactation, postpartum amenorrhea and resumption of menses. Osteoporos. Int. 2003;14:103–9.CrossRefGoogle ScholarPubMed
Economou-Mavrou, C., McCance, R.Calcium, magnesium and phosphorus in fetal tissues. Biochem. J. 1958;68:573.CrossRefGoogle Scholar
Garel, J., Gilbert, M.Dietary calcium and phosphorus manipulations in thyroparathyroidectomized pregnant rats and fetal liver glycogen stores. Reprod. Nutr. Rev. 1981;21:969–72.CrossRefGoogle ScholarPubMed
Alatas, O., Colak, O., Alatas, E.et al.Osteocalcin metabolism in late fetal life: fetal and maternal osteocalcin levels. Clin. Chim. Acta. 1995;239:179–83.CrossRefGoogle ScholarPubMed
Salas, Toro A., Diez, Duenas J., Revuelta, Jaime E.Concentrations of calcium and bone remodeling biomarkers in umbilical cord blood and urine of newborn infants during delivery. An. Esp. Pediatr. 2000;54:290–6.Google Scholar
Nishiyama, S., Fujimoto, S., Kodama, M., Matsuda, I.The negative correlation between prolactin and ionic calcium in cord blood of full term infants. Endocrinol. Jpn. 1985;32:9–15.CrossRefGoogle ScholarPubMed
Whitsett, J., Tsang, R.Calcium uptake and binding by membrane fractions of the human placenta: adenosine triphosphate-dependent calcium accumulation. Pediatr. Res. 1980;14:769–75.CrossRefGoogle Scholar
Fisher, G., Kelley, L., Smith, C.adenosine triphosphate-dependent calcium transport across basal plasma membranes of human placental trophoblast. Am. J. Physiol. 1987;252:C38–46.CrossRefGoogle Scholar
Pike, J. W., Gooze, L. L., Haussler, M. R.Biochemical evidence for 1,25-dihydroxyvitamin D receptor macromolecules in parathyroid, pancreatic, pituitary, and placental tissues. Life Sci. 1980;26:407–14.CrossRefGoogle ScholarPubMed
Lafond, J., Auger, D., Fortier, J., Brunette, M.Parathyroid hormone receptors in human placental syncytiotrophoblasts brush border and basal plasma membranes. Endocrinology 1988;123:2834–40.CrossRefGoogle ScholarPubMed
Umeki, S., Nagao, S., Nozawa, Y.The purification and identification of calmodulin from human placenta. Biochem. Biophys. Acta. 1981;674:319–26.CrossRefGoogle ScholarPubMed
Bruns, M., Fausto, S., Avioli, L.Placental calcium-binding proteins in rats. J. Biol. Chem. 1978;253:3186–90.Google ScholarPubMed
Bruns, M., Vollmer, S., Wallshein, V., Bruns, D.Vitamin D-dependent calcium-binding protein. J. Biol. Chem. 1981;256:4649–53.Google ScholarPubMed
Lester, G.Cholecalciferol and placental calcium transport. Fed. Proc. 1986;45:2524–7.Google ScholarPubMed
Ohta, T., Mori, M., Ogawa, K., Matsuyama, T., , Ishii S.Immunocytochemical localization of BGP in human bones in various developmental stages and pathological conditions. Virchows Arch. A. Pathol. Anat. Histopathol. 1989;415:459–66.CrossRefGoogle ScholarPubMed
Khattab, A., Forfar, J.Interrelationships of calcium, phosphorus and glucose levels in mother and newborn infant. Biol. Neonate. 1970;15:26–36.CrossRefGoogle ScholarPubMed
Cockburn, F., Belton, N., Purvis, R.et al.Maternal vitamin D intake and mineral metabolism in mothers and their newborn infants. Br. Med. J. 1980;281:11–14.CrossRefGoogle ScholarPubMed
Croley, T.The intracellular localization of calcium within the mature human placental barrier. Am. J. Obstet. Gynecol. 1973;117:926–32.CrossRefGoogle ScholarPubMed
Shami, Y., Messer, H., Copp, D.Calcium uptake by placental plasma membrane vesicles. Biochim. Biophys. Acta 1975;401:256–64.CrossRefGoogle ScholarPubMed
Bruns, M., Fausto, S., Avioli, L.Placental calcium-binding proteins in rats. J. Biol. Chem. 1978;253:3186–90.Google ScholarPubMed
Bruns, M., Vollmer, S., Wallshein, V., Bruns, D.Vitamin D-dependent calcium-binding protein. J. Biol. Chem. 1981;256:4649–53.Google ScholarPubMed
Norman, A., Roth, J., Orci, L.The vitamin D endocrine system: steroid metabolism, hormone receptors, and biological response (calcium binding proteins). Endocr. Rev. 1982;3:331–66.CrossRefGoogle Scholar
Delvin, E., Richard, P., Pothier, P., Menard, D.Presence and binding characteristics of calcitriol receptors in human fetal gut. FEBS 1990;262:55–7.CrossRefGoogle ScholarPubMed
Shami, Y., Radde, I.Calcium-stimulated adenosine triphosphatease of guinea pig placenta. Biochim. Biophys. Acta. 1971;249:345–52.CrossRefGoogle Scholar
Whitsett, J., Tsang, R.Calcium uptake and binding by membrane fractions of the human placenta: adenosine triphosphate-dependent calcium accumulation. Pediatr. Res. 1980;14:769–75.CrossRefGoogle Scholar
Miller, R., Berndt, W.Evidence for Mg2+-dependent, Na+ + K+-activated adenosine triphosphatease and Ca2+-adenosine triphosphatease in the human term placenta. Proc. Soc. Exp. Biol. Med. 1973;143:118–22.CrossRefGoogle Scholar
Gupta, M., Kuppuswamy, G., Subramanian, A.Transplacental transfer of 25-hydroxycholecalciferol. Postgrad. Med. J. 1982;58:408–10.CrossRefGoogle Scholar
Krukowsky, M., Lehr, D.Parathyroid hormone and the placental barrier. Arch. Int. Pharmacodyn. Ther. 1963;146:245–65.Google Scholar
Garel, J., Dumont, C.Distribution and inactivation of labeled parathyroid hormone in the rat fetus. Horm. Metab. Res. 1972;4:217–21.CrossRefGoogle ScholarPubMed
Northrop, G., Misenheimer, H., Becker, F.Failure of parathyroid hormone to cross the non-human primate placenta. Am. J. Obstet. Gynecol. 1979;129:449–53.CrossRefGoogle Scholar
Root, A., Gruskin, A., Reber, R.et al.Serum concentrations of parathyroid hormone in infants, children, and adolescents. Pediatrics 1974;85:329–36.CrossRefGoogle ScholarPubMed
Hillman, L., Slatopolsky, E., Haddad, J.Perinatal vitamin D metabolism: IV. Maternal and cord serum 24,25-dihydroxy vitamin D concentrations. J. Clin. Endocrinol. Metab. 1977;47:1073–77.CrossRefGoogle Scholar
Reitz, R., Daane, T., Woods, J.et al.Calcium, magnesium, phosphorus, and parathyroid hormone interrelationships in pregnancy and newborn infants. Obstet. Gynecol. 1977;50:701–5.Google ScholarPubMed
Samaan, N., Wigoda, C., Castillo, S. Human serum calcitonin and parathyroid hormone levels in the maternal, umbilical cord blood and postpartum. Proceedings of the Fourth International Symposium on Endocrinology. London: William Heinemann; 1973:364–72.Google Scholar
Watney, P., Rudd, B.Calcium metabolism in pregnancy and in the newborn. J. Obstet. Gynecol. Br. Commonw. 1974;81:210–19.CrossRefGoogle ScholarPubMed
Lequin, R., Hackeng, W., Schopman, W.A radioimmunoassay for parathyroid hormone in man. II. Measurement of parathyroid hormone concentrations in human plasma by means of a radioimmunoassay for bovine hormone. Acta Endocrinol. 1970;63:655–66.Google ScholarPubMed
Tsang, R., Chen, I., Friedman, M.et al.Neonatal parathyroid function: role of gestational age and postnatal age. J. Pediatr. 1973;83:728–38.CrossRefGoogle ScholarPubMed
Allgrove, J., Adami, S., Manning, R., O'Riordan, J.Cytochemical bioassay of parathyroid hormone in maternal and cord blood. Arch. Dis. Child. 1985;60:110–15.CrossRefGoogle ScholarPubMed
Robinson, N., Sibley, C., Mughal, M., Boyd, R.Fetal control of calcium transport across the rat placenta. Pediatr. Res. 1989;26:109–15.CrossRefGoogle ScholarPubMed
Rodda, C., Kubota, M., Heath, J.et al.Evidence for a novel parathyroid hormone-related protein in fetal lamb parathyroid glands and sheep placenta: comparisons with a similar protein implicated in humoral hypercalcemia of malignancy. J. Endocrinol. 1988;117:261–71.CrossRefGoogle Scholar
Ikeda, K., Weir, E., Mangin, M.et al.Expression of messenger ribonucleic acids encoding a parathyroid hormone-like peptide in normal human and animal tissues with abnormal expression in human parathyroid adenomas. Mol. Endocrinol. 1988;2:1230–36.CrossRefGoogle ScholarPubMed
Care, A., Caple, I., Abbas, S., Pickard, D.The effect of fetal thyroparathyroidectomy on the transport of calcium across the ovine placenta. Placenta 1986;7:417–24.CrossRefGoogle ScholarPubMed
Martin, T. A novel parathyroid hormone-related protein: role in pathology and physiology. In Peterlik, M., Bronner, F., eds. Molecular and Cellular Regulation of Calcium and Phosphate Metabolism: Proceedings of the Symposium on Molecular and Cellular Regulation of Calcium and Phosphate Metabolism, held in Vienna, November 17, 1988. New York:Wiley-Liss;1990:1–37.Google Scholar
Abbas, S., Pickard, D., Rodda, C.et al.Stimulation of ovine placental calcium transport by purified natural and recombinant parathyroid hormone-related protein (parathyroid hormonerP) preparations. Q. J. Exp. Physiol. 1989;74:549–52.CrossRefGoogle ScholarPubMed
MacIsaac, R. J., Heath, J. A., Rodda, C. P.et al.Role of the fetal parathyroid glands and parathyroid hormone-related protein in the regulation of placental transport of calcium, magnesium and inorganic phosphate. Reprod. Fertil. Dev. 1991;3:447–57.CrossRefGoogle ScholarPubMed
Miao, D., He, B., Karaplis, A. C., Goltzman, D.Parathyroid hormone is essential for normal fetal bone formation. J. Clin. Invest. 2002;109:1173–82.CrossRefGoogle ScholarPubMed
Kovacs, C. S., Chafe, L. L., Fudge, N. J., Friel, J. K., Manley, N. R.parathyroid hormone regulates fetal blood calcium and skeletal mineralization independently of parathyroid hormonerP. Endocrinology 2001;142:4983–93.CrossRefGoogle Scholar
Kovacs, C. S., Manley, N. R., Moseley, J. M., Martin, T. J., Kronenberg, H. M.Fetal parathyroids are not required to maintain placental calcium transport. J. Clin. Invest. 2001;107:1007–15.CrossRefGoogle Scholar
Chan, A., Conen, P.Ultrastructural observations on cytodifferentiation of parafollicular cells in the human fetal thyroid. Lab. Invest. 1971;53:249–59.Google Scholar
Samaan, N., Anderson, G., Adam-Mayne, M.Immunoreactive calcitonin in the mother, neonate, child, and adult. Am. J. Obstet. Gynecol. 1975;121:622–5.CrossRefGoogle Scholar
Whitehead, M., Lane, G., Young, O.et al.Interrelations of calcium-regulating hormones during normal pregnancy. Br. Med. J. 1981;283:10–31.CrossRefGoogle ScholarPubMed
Drake, T., Kaplan, R., Lewis, T.The physiologic hyperparathyroidism of pregnancy: is it primary or secondary?Obstet. Gynecol. 1979;53:746–9.Google ScholarPubMed
Stevenson, J., Hillyard, C., MacIntyre, I.et al.The physiological role for calcitonin: protection of the maternal skeleton. Lancet 1979;2:769–70.CrossRefGoogle ScholarPubMed
Wieland, P., Fisher, J., Trechsel, U.et al.Perinatal parathyroid hormone, vitamin D metabolites and calcitonin in man. Am. J. Physiol. 1980;239:E385–90.Google ScholarPubMed
Seino, Y., Ishida, M., Yamaoka, K.et al.Serum calcium regulating hormones in the perinatal period. Calcif. Tissue. Int. 1982;34:131–5.CrossRefGoogle ScholarPubMed
Hillman, L., Rojanasathit, S., Slatopolsky, E., Haddad, J.Serial measurements of serum calcium, magnesium, parathyroid hormone, calcitonin, and 25-hydroxyvitamin D in premature and term infants during the first week of life. Pediatr. Res. 1977;11:739–44.CrossRefGoogle Scholar
Pearse, A. Calcitonin. In Taylor, S., Foster, G., eds. Calcitonin, Proceedings of the Second International Symposium. London: Heinemann Medical;1969:125.Google Scholar
Leroyer-Alizon, E., David, L., Dubois, P.Evidence for calcitonin in the thyroid gland of normal and anencephalic human fetuses: immunocytological localization, radioimmunoassay and gel filtration of thyroid extracts. J. Clin. Endocrinol. Metab. 1980;50:316–21.CrossRefGoogle ScholarPubMed
Venkataraman, P., Tsang, R., Chen, I., Sperling, M.Pathogenesis of early neonatal hypocalcemia: Studies of serum calcitonin, gastrin and plasma glucagon. J. Pediatr. 1987;110:599–603.CrossRefGoogle ScholarPubMed
Barlet, J.Calcitonin may modulate placental transfer in ewes. J. Endocrinol. 1985;104:17–21.CrossRefGoogle ScholarPubMed
Hollis, B., Pittard, W.Evaluation of total fetomaternal vitamin D relationships at term. Evidence for racial differences. J. Clin. Endocrinol. Metab. 1984;59:652–7.CrossRefGoogle ScholarPubMed
Ross, R., Care, A., Taylor, C., Pele, B., Sommerville, B. The transplacental movement of metabolites of vitamin D in the sheep. In Norman, A., Schaefer, K., Coburn, J., eds. Vitamin D. Basic Research and its Clinical Application. Berlin: DeGruyter;1979:341–4.Google Scholar
Clements, M., Fraser, D.Vitamin D supply to the rat fetus and neonate. J. Clin. Invest. 1988;81:1768–73.CrossRefGoogle ScholarPubMed
Ron, M., Levitz, M., Chuba, J., Dancis, J.Transfer of 25-hydroxyvitamin D3 across the perfused human placenta. Am. J. Obstet. Gynecol. 1984;148:370–4.CrossRefGoogle ScholarPubMed
Ross, R. Calcium regulating hormones. In Polin, R., Fox, W., eds. Fetal and Neonatal Physiology, Vol. 2. Philadelphia, PA: W. B. Saunders Co; 1992:1698–734.Google Scholar
Hillman, L., Haddad, J.Human perinatal vitamin D metabolism: I. 25-hydroxy-vitamin D in maternal and cord blood. J. Pediatr. 1974;84:742–9.CrossRefGoogle Scholar
Weisman, Y., Occhipinti, M., Knox, G., Reiter, E., Root, A.Concentrations of 24,25-dihydroxyvitamin D and 25-hydroxyvitamin D in paired maternal-cord sera. Am. J. Obstet. Gynecol. 1978;130:704–7.CrossRefGoogle ScholarPubMed
Ross, R.Dorsey, J.Postnatal changes in plasma 1,25-dihydroxyvitamin D3 in sheep: role of altered clearance. Am. J. Physiol. 1991;261:E635–41.Google ScholarPubMed
Weisman, Y., Sapir, R., Harell, A., Edelstein, S.Maternal-perinatal interrelationships of vitamin D in rats. Biochem. Biophys. Acta. 1976;428:388–95.CrossRefGoogle ScholarPubMed
Gertner, J., Glassman, M., Coustan, D., Goodman, D.Fetomaternal, vitamin D relationships at term. J. Pediatr. 1980;97:637–40.CrossRefGoogle ScholarPubMed
Hoogenboezem, T., Degenhart, H., Muinck Keizer-Schrama, S.et al.Vitamin D metabolism in breast-fed infants and their mothers. Pediatr. Res. 1989;25:623–8.CrossRefGoogle ScholarPubMed
Cross, N. A., Hillman, L. S., Allen, S. H., Krause, G. F., Vieira, N. E.Calcium homeostasis and bone metabolism during pregnancy, lactation, and postweaning: a longitudinal study. Am. J. Clin. Nutr. 1995;61:514–23.CrossRefGoogle ScholarPubMed
Ritchie, L. D., Fung, E. B., Halloran, B. P.et al.A longitudinal study of calcium homeostasis during human pregnancy and lactation and after resumption of menses. Am. J. Clin. Nutr. 1998;67:693–701.CrossRefGoogle ScholarPubMed
O'Brien, K. O., Nathanson, M. S., Mancini, J., Witter, F. R.Calcium absorption is significantly higher in adolescents during pregnancy than in the early postpartum period. Am. J. Clin. Nutr. 2003;78:1188–93.CrossRefGoogle ScholarPubMed
Raisz, L. G.Physiology and pathophysiology of bone remodeling. Clin. Chem. 1999;45:1353–8.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Normal bone and mineral physiology and metabolism
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Normal bone and mineral physiology and metabolism
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Normal bone and mineral physiology and metabolism
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.016
Available formats
×