Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-03T08:44:15.816Z Has data issue: false hasContentIssue false

32 - The infant of the diabetic mother

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Richard M. Cowett
Affiliation:
CIGNA Insurance, Pittsburgh, PA
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Introduction

The infant of the diabetic mother (IDM) is the premier example of the metabolic dysequilibrium that potentially exists in the neonate secondary to a maternal condition, i.e., diabetes. Developmentally, the normal neonate is in a transitional state of glucose homeostasis. The fetus is completely dependent on his/her mother for glucose delivery and the adult is considered to have precise control of glucose homeostasis. However, maintenance of glucose homeostasis may be a major problem for the neonate born to the nondiabetic mother. The precarious nature of this equilibrium is emphasized by the numerous morbidities producing or associated with neonatal hypo- and hyperglycemia during the neonatal period. Although many IDMs have an uneventful perinatal course, there is still an increased risk of complications. Many can be minimized, but not currently eliminated, with appropriate obstetric and pediatric intervention. In fact, a recent analysis indicated that there is still much room for improvement due to the multiplicity of factors that impact on any specific pregnancy. This discussion will enumerate many of the difficulties that the IDM may encounter, evaluate the pathophysiologic basis of their occurrence, and suggest treatment modalities.

Perinatal mortality and morbidity

Theoretically, the more metabolically controlled the diabetic pregnant patient is, the greater the potential for producing a normal neonate. Certainly the pregnancy of the diabetic mother should be considered to be of high risk.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Cowett, R. M. The infant of the diabetic mother. In Cowett, R. M., ed. Principles of Perinatal-Neonatal Metabolism. New York, NY: Springer-Verlag;1998:1105–30.CrossRefGoogle Scholar
Cowett, R. M., Farrag, H. M. Neonatal glucose metabolism. In Cowett, R. M., ed. Principles of Perinatal Neonatal Metabolism. New York, NY: Springer Verlag;1998:686–722.CrossRefGoogle Scholar
Wolfe, R. R., Allsop, J., Burke, J. F.Glucose metabolism in man: responses to intravenous glucose. Metab. Clin. Exp. 1979;28:210–20.CrossRefGoogle ScholarPubMed
Carrapato, M. R., Marcelino, F.The infant of the diabetic mother: the critical developmental windows. Early Pregnancy 2001;5:57–8.Google ScholarPubMed
Pedersen, J., Molsted-Pedersen, L., Andersen, B.Assessors of fetal perinatal mortality in diabetic pregnancy. Analyses of 1,332 pregnancies in the Copenhagen series 1946–1972. Diabetes 1974;23:302–5.CrossRefGoogle Scholar
Hare, J. W., White, P.Gestational diabetes and the White classification. Diabetes Care 1980;3:394.CrossRefGoogle Scholar
Diamond, M. D., Salyer, S. L., Vaughn, W. K., Cotton, R., Boehm, F. H.Reassessment of White's clarification and Pedersen's prognostically bad signs of diabetic pregnancies in insulin dependent diabetic pregnancies. Am. J. Obstet. 1987;156:599–604.CrossRefGoogle Scholar
Artal, R., Golde, S. H., Dorey, F.et al.The effect of plasma glucose variability on neonatal outcome in the pregnant diabetic patient. Am. J. Obstet. Gynecol. 1983;147:537–41.CrossRefGoogle ScholarPubMed
Mello, G., Parretti, E., Mecacci, F.et al.What degree of maternal metabolic control in women with type 1 diabetes is associated with normal body size and proportions in full term infants?Diabetes Care 2000;10:1494–8.CrossRefGoogle Scholar
Coustan, D. R., Imarah, J.Prophylactic insulin treatment of gestational diabetes reduces the incidence of macrosomia, operative delivery, and birth trauma. Am. J. Obstet. Gynecol. 1984;150:836–42.CrossRefGoogle ScholarPubMed
Howorka, K., Pumpria, J., Gabriel, M.et al.Normalization of pregnancy outcome in pre-gestational diabetes through functional insulin treatment and modular outpatient education adapted for pregnancy. Diab. Med. 2001;18:965–72.CrossRefGoogle Scholar
Hod, M., Rabinerson, D., Kaplan, B.et al.Perinatal complications following gestational diabetes: how sweet is it?Acta Obstet. Gynecol. Scan. 1996;75:809–15.CrossRefGoogle Scholar
Veciana, M., Major, A., Morgan, M. A.et al.Postprandial versus preprandial blood glucose monitoring in women with gestational diabetes mellitus requiring insulin therapy. N. Eng. J. Med. 1995;333:1237–41.CrossRefGoogle ScholarPubMed
Pedersen, J.The Pregnant Diabetic and her Newborn. 2nd edn. Baltimore, MD: Williams & Wilkins, 1977.Google Scholar
Susa, J. B., McCormick, K. L., Widness, J. A.et al.Chronic hyperinsulinemia in the fetal rhesus monkey. Effects on fetal growth and composition. Diabetes 1979;28:1058–63.CrossRefGoogle ScholarPubMed
Block, M. B., Pildes, R. S., Mossabhoy, N. A., Steiner, D. F., Rubinstein, A. H.C-peptide immunoreactivity (CRP): a new method for studying infants of insulin-treated diabetic mothers. Pediatrics 1974;53:923–8.Google Scholar
MacFarlane, C. M., Tsakalakos, N.The extended Pedersen hypothesis. Clin. Physiol. Biochem. 1988;6:68–73.Google ScholarPubMed
Schwartz, R., Gruppuso, P. A., Pelzold, K.et al.Hyperinsulinemia and macrosomia in the fetus of the diabetic mother. Diabetes Care 1994;17:640–8.CrossRefGoogle ScholarPubMed
Jovanovic-Peterson, L., Peterson, C. M., Reed, G. F.et al.Maternal postprandial glucose levels and infant birth weight: The Diabetes in Early Pregnancy Study. Am. J. Obstet. Gynecol. 1991;164:103–11.CrossRefGoogle ScholarPubMed
Kalhan, S. C., Savin, S. M., Adam, P. A. J.Attenuated glucose production rate in newborn infants of insulin-dependent diabetic mothers. N. Engl. J. Med. 1977;296:375–6.CrossRefGoogle ScholarPubMed
King, K. C., Tserng, K. Y., Kalhan, S. C.Regulation of glucose production in newborn infants of diabetic mothers. Pediatr. Res. 1982;16:608–12.CrossRefGoogle ScholarPubMed
Cowett, R. M., Susa, J. B., Giletti, B., Oh, W., Schwartz, R.Variability of endogenous glucose production in infants of insulin dependent diabetic mothers. Pediatr. Res. 1980;14:570A.Google Scholar
Cowett, R. M., Susa, J. B., Giletti, B., Oh, W., Schwartz, R.Glucose kinetics in infants of diabetic mothers. Am. J. Obstet. Gynecol. 1983;146:781–6.CrossRefGoogle ScholarPubMed
Cowett, R. M., Oh, W., Schwartz, R.et al.Persistent glucose production during glucose infusion in the neonate. J. Clin. Invest. 1983;71:467–73.CrossRefGoogle ScholarPubMed
Cowett, R. M., Andersen, G. E., Maguire, C. A., Oh, W.Ontogeny of glucose kinetics in low birth weight infants. J. Pediatr. 1988;112:462–5.CrossRefGoogle Scholar
Baarsma, R., Reijngoud, D. J., Asselt, W. A.et al.Postnatal glucose kinetics in newborns of lightly controlled insulin dependent diabetic mothers. Pediatr. Res. 1993;34:443–7.CrossRefGoogle Scholar
Widness, J. A., Cowett, R. M., Coustan, D. R., Carpenter, M. W., Oh, W.Neonatal morbidities in infants of mothers with glucose intolerance in pregnancy. Diabetes 1985;34:61–5.CrossRefGoogle ScholarPubMed
Freinkel, N.Of pregnancy and progeny. Banting Lecture. Diabetes 1980;29:1023–35.CrossRefGoogle ScholarPubMed
Kalkhoff, R. K., Kandaraki, E., Morrow, P. G.et al.Relationship between neonatal birth weight and maternal plasma amino acid profiles in lean and obese non-diabetic women and in type I diabetic pregnant women. Metabolism 1988;37:234–9.CrossRefGoogle Scholar
Whittaker, P. G., Lee, C. H., Taylor, R.Whole body protein kinetics in women: effect of pregnancy and Type I insulin dependent diabetes mellitus during anabolic stimulation. Am. J. Physiol. Endocrinol. Met. 2000;279:E978–88.CrossRefGoogle ScholarPubMed
Knopp, R. H., Magee, M. S., Walden, C. E., Bonet, B., Benedetti, T. S.Prediction of infant birth weight by gestational diabetes mellitus screening tests: importance of plasma triglyceride. Diabetes Care 1992;15:1605–13.CrossRefGoogle ScholarPubMed
Kitajima, M., Oka, S.Yasuchi, I.et al.Maternal serum triglyceride at 24–32 weeks' gestation and newborn weight in nondiabetic women with positive diabetic screens. Obstet. Gynecol. 2001;97;776–80.CrossRefGoogle ScholarPubMed
Becerra, J. E., Koury, M. J., Cordero, J. F., Erickson, J. D.Diabetes mellitus during pregnancy and the risks for specific birth defects: a population based case control study. Pediatrics 1990;85:1–9.Google ScholarPubMed
Waller, D. K., Keddie, A. M., Canfield, M. A.Do infants with major congenital anomalies have an excess of macrosomia?Teratology 2001;64;311–17.CrossRefGoogle ScholarPubMed
Watkins, M. L., Botto, L. D.Maternal prepregnancy weight and congenital heart defects in offspring. Epidemiology 2001;12;439–46.CrossRefGoogle ScholarPubMed
Metzger, B. E., Buchanan, T. A. eds. Diabetes and birth defects: Insights from the 1980s, prevention in the 1990s. Diabetes Spectrum 1990;3:149–89.Google Scholar
Dicker, D., Feldberg, D., Yeshaya, A.et al.Pregnancy outcome in gestational diabetes with preconceptional diabetes counseling. Aust. NZ. J. Obstet. Gynecol. 1987;27:184–7.CrossRefGoogle Scholar
Ballard, J. L., Holroyde, J., Tsang, R. C.et al.High malformation rates and decreased mortality in infants of diabetic mothers managed after the first trimester (1956–1978). Am. J. Obstet. Gynecol. 1984;148:111–18.CrossRefGoogle Scholar
Davis, W. S., Allen, R. P., Favara, B. E., Sloves, T. L.Neonatal small left colon syndrome. Am. J. Roent. Rad. Therap. Nucl. Med. 1974;120:327–9.Google ScholarPubMed
Ferencz, C., Rubin, J. D., McCarter, R. J., Clark, E. B.Maternal diabetes and cardiovascular malformations: predominance of double outlet right ventricle and truncus arteriosus. Teratology 1990;41:319–26.CrossRefGoogle ScholarPubMed
Way, G. L., Wolfe, R. R., Eshaghpour, H. D.et al.The natural history of hypertrophic cardiomyopathy in infants of diabetic mothers. Pediatrics 1979;95:1020–5.CrossRefGoogle ScholarPubMed
Reeler, M. D., Kaplan, S.Hypertrophic cardiomyopathy in infants of diabetic mothers: an update. Am. J. Perinatol. 1988;4:353–8.CrossRefGoogle Scholar
Mace, S., Hirshfield, S. S., Riggs, T., Fanaroff, A., Merkatz, I. R.Echocardiographic abnormalities in infants of diabetic mothers. J. Pediatr. 1979;95:1013–9.CrossRefGoogle ScholarPubMed
Breitweser, J. A., Mayer, R. A., Sperling, M. A., Tsang, R. C., Kaplan, S.Cardiac septal hypertrophy in hyperinsulinemic infants. J. Pediatr. 1980;96:535–9.CrossRefGoogle ScholarPubMed
Halliday, H. L.Hypertrophic cardiomyopathy in infants of poorly controlled diabetic mothers. Arch. Dis. Child. 1981;56:258–63.CrossRefGoogle ScholarPubMed
Mintz, M. C., Landon, M. B., Gabbe, S. G.Shoulder soft tissue width as a predictor of macrosomia in diabetic pregnancies. Am. J. Perinatol. 1989;6:240–3.CrossRefGoogle ScholarPubMed
Mimouni, F., Miodounik, M., Siddigi, T. A., Khoury, J., Tsang, R. C.Perinatal asphyxia in infants of insulin dependent diabetic mothers. J. Pediatr. 1988;113:345–53.CrossRefGoogle ScholarPubMed
Ogata, E. S., Sabbagha, R., Metzger, B. E.et al.Serial ultrasonography to assess evolving fetal macrosomia. Studies in 23 pregnant women. J. Am. Med. Assoc. 1980;243:2405–8.CrossRefGoogle Scholar
Davis, R., Woelk, G., Mueller, B. A., Daling, J.The role of previous birthweight on risk for macrosomia on a subsequent birth. Epidemiology 1995;6:607–11.CrossRefGoogle ScholarPubMed
Robert, M. F., Neff, R. K., Hubbell, J. P., Taeusch, H. W., Avery, M. E.Association between maternal diabetes and the respiratory distress syndrome in the newborn. N. Engl. J. Med. 1976;294:357–60.CrossRefGoogle ScholarPubMed
Light, I. J., Sutherland, J. M., Loggie, J. M., Gaffney, T. E.Impaired epinephrine release in hypoglycemic infants of diabetic mothers. N. Engl. J. Med. 1967;277;394–8.CrossRefGoogle ScholarPubMed
Artal, R., Platt, L. D., Kummula, R. K.et al.Sympatho-adrenal activity in infants of diabetic mothers. Am. J. Obstet. Gynecol. 1982;42:436–9.CrossRefGoogle Scholar
Artal, R., Doug, N., Wu, P., Sperling, M.Circulating catecholamines and glucagon in infants of strictly controlled diabetic mothers. Biol. Neonate 1988;53:121–5.CrossRefGoogle ScholarPubMed
Broberger, U., Hansson, U., Lagercrantz, H., Persson, B.Sympatho-adrenal activity and metabolic adjustment during the first 12 hours after birth in infants of diabetic mothers. Acta Pediatr. Scand. 1984;73:620–5.CrossRefGoogle ScholarPubMed
Cowett, R. M.Decreased response to catecholamines in the newborn: effect on glucose kinetics in the lamb. Metabolism 1988;37:736–40.CrossRefGoogle ScholarPubMed
Cowett, R. M.Alpha adrenergic agonists stimulate neonatal glucose production less than beta adrenergic agonists in the lamb. Metabolism 1988;37:831–6.CrossRefGoogle ScholarPubMed
Cowett, R. M., Rapoza, R. E., Gelardi, N. L.Insulin counter regulatory hormones are ineffective in neonatal hyperinsulinemic hypoglycemia. Metabolism 1999;48;568–74.CrossRefGoogle Scholar
Cornblath, M., Schwartz, R., Aynsley-Green, A., Lloyd, J. K.Hypoglycemia in infancy: the need for a rational definition. Pediatrics 1990;85:834–7.Google ScholarPubMed
Cowett, R. M., Loughead, J. L.Neonatal glucose metabolism: differential diagnosis, evaluation and treatment of hypoglycemia. Neonatal Netw. 2002;21:9–19.CrossRefGoogle ScholarPubMed
Tsang, R. C., Brown, D. R., Steichen, J. J. Diabetes and calcium disturbances in infants of diabetic mothers. In Merkatz, I. R., Adam, P. A. J., eds. The Diabetic Pregnancy. A Perinatal Perspective. New York, NY: Grune and Stratton; 1979:207–25.Google Scholar
Tsang, R. C., Kleinman, L. I., Sutherland, J. M.Hypocalcemia in infants of diabetic mothers: studies in Ca, P and Mg metabolism and in parathyroid hormone responsiveness. J. Pediatr. 1972;80:384–95.CrossRefGoogle Scholar
Tsang, R. C., Light, I. J., Sutherland, J. M., Kleinman, L. I.Possible pathogenetic factors in neonatal hypocalcemia of prematurity. J. Pediatr. 1973;82:423–9.CrossRefGoogle Scholar
Tsang, R. C., Chen, I., Atkinson, W.et al.Neonatal hypocalcemia in infants with birth asphyxia. J. Pediatr. 1974;84:428–33.CrossRefGoogle ScholarPubMed
Noguchi, A., Erin, M., Tsang, R. C.Parathyroid hormone in hypocalcemia and normocalcemic infants of diabetic mothers. J. Pediatr. 1980;97:112–14.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C.Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralization. Proc. Nutr. Soc. 2000;59;55–63.CrossRefGoogle ScholarPubMed
Mimouni, F., Miodovnik, M., Tsang, R. C.et al.Decreased maternal serum magnesium concentration and adverse fetal outcome in insulin-dependent diabetic women. Obstet. Gynecol. 1987;70:85–8.Google ScholarPubMed
Peevy, K. J., Landaw, S. A., Gross, S. A.Hyperbilirubinemia in infants of diabetic mothers. Pediatrics 1980;66:417–19.Google ScholarPubMed
Stevenson, D. K., Ostrander, C. R., Cohen, R. S., Johnson, J. D., Schwartz, H. C.Pulmonary excretion of carbon monoxide in the human infant as an index of bilirubin production. Eur. J. Pediatr. 1981;137:255–9.CrossRefGoogle ScholarPubMed
Stevenson, D. K., Ostrander, C. R., Hopper, A. O., Cohen, R. S., Johnson, J. D.Pulmonary excretion of carbon monoxide as an index of bilirubin production. IIa. Evidence for possible delayed clearance of bilirubin in infants of diabetic mothers. J. Pediatr. 1981;98:822–4.CrossRefGoogle ScholarPubMed
Widness, J. A., Susa, J., Garcia, J. F.et al.Increased erythropoiesis and elevated erythropoietin in infants born to diabetic mothers and in hyperinsulinemic rhesus fetuses. J. Clin. Invest. 1981;67:637–42.CrossRefGoogle ScholarPubMed
Carson, B. S., Philipps, A. F., Simmons, M. A., Battaglia, F. C., Meschia, G.Effects of a sustained insulin infusion upon glucose uptake and oxygenation of the ovine fetus. Pediatr. Res. 1980;14:147–52.CrossRefGoogle ScholarPubMed
Philipps, A. F., Widness, J. A., Garcia, J. F., Raye, J. R., Schwartz, R.Erythropoietin elevation in the chronically hyperglycemia fetal lamb. Proc. Soc. Exp. Biol. Med. 1982;170:42–7.CrossRefGoogle ScholarPubMed
Mimouni, F., Miodovnik, M., Siddiqi, T. A.et al.Neonatal polycythemia in infants of insulin-dependent diabetic mothers. Obstet. Gynecol. 1986;68:370–2.CrossRefGoogle ScholarPubMed
Perrine, S. P., Greene, M. F., Faller, D. V.Delay in the fetal globin switch in infants of diabetic mothers. N. Engl. J. Med. 1985;312:334–8.CrossRefGoogle ScholarPubMed
Green, D. W., Khoury, J., Mimouni, F.Neonatal hematocrit and maternal glycemic control in insulin dependent diabetes. J. Pediatr. 1992;120:302–5.CrossRefGoogle ScholarPubMed
Murata, K., Toyoda, N., Ichio, T., Ida, M., Sugiyama, Y.Cord transferrin and ferritin values for erythropoiesis in newborn infants of diabetic mothers. Endocrinol. Jpn. 1989;36:827–32.CrossRefGoogle ScholarPubMed
Avery, M. E., Oppenheimer, E. H., Gordon, H. H.Renal vein thrombosis in newborn infants of diabetic mothers. N. Eng. J. Med. 1957;265:1134–8.CrossRefGoogle Scholar
Takeuchi, A., Benirschke, K.Renal vein thrombosis of the newborn and its relation to maternal diabetes. Biol. Neonate 1961;3:237.CrossRefGoogle Scholar
Fritz, M. A., Christopher, C. R.Umbilical vein thrombosis and maternal diabetes mellitus. J. Reprod. Med. 1981;26:320–3.Google ScholarPubMed
Stuart, M. J., Sunderji-Shirazali, G., Allen, J. B.Decreased prostacyclin production in the infant of the diabetic mother. J. Lab. Clin. Med. 1981;98:412–16.Google ScholarPubMed
Stuart, M., Sunderje, S. C., Walenga, R. W.et al.Abnormalities in vascular arachidonic acid metabolism in the infant of the diabetic mother. Br. Med. J. 1983;290:1700–2.CrossRefGoogle Scholar
Silverman, B. L., Metzger, B. E., Chon, H., Loeb, C. A.Impaired glucose tolerance in adolescent offspring of diabetic mothers. Relationship to fetal hyperinsulinemia. Diabetes Care 1995;18:611–17.CrossRefGoogle Scholar
Silverman, B. L., Rizzo, T. A., Cho, N. H., Metzger, B. E.Long term effects of the intrauterine environment. The northwestern university diabetes in pregnancy center. Diabetes Care 1998;21:B142–9.Google Scholar
Stehbens, J. A., Baker, G. L., Kitchell, M.Outcome at ages 1, 3, and 5 years of children born to diabetic women. Am. J. Obstet. Gynecol. 1977;127:408–13.CrossRefGoogle Scholar
Petersen, M. B., Pedersen, S. A., Greisen, G., Pedersen, J. F., Molsted-Pedersen, L.Early growth delay in diabetic pregnancy: relation to psychomotor development at age 4. Br. Med. J. 1988;296:598–600.CrossRefGoogle ScholarPubMed
Persson, B., Gentz, J.Follow up of children of insulin dependent and gestational diabetic mothers. Neuropsychological outcome. Acta Paediatr. Scand. 1983;73:349–58.CrossRefGoogle Scholar
Hadden, D. R., Bryne, E., Trotter, I.et al.Physical and psychological health of children of Type I (insulin dependent) diabetic mothers. Diabetologia 1983;26:250–4.Google Scholar
Rizzo, T., Metzger, R. E., Burns, W. J., Burn, K.Correlations between antepartum maternal metabolism and child intelligence. N. Engl. J. Med. 1991;325:911–6.CrossRefGoogle Scholar
Ornoy, A., Ratson, N., Greeenbaum, C., Wolf, A., Dulitzky, M.School-age children born to diabetic mothers and to mothers with gestational diabetes exhibit a high rate of inattention and fine and gross motor impairment. J. Pediatr. Endocrinol. Metab. 2001;14:681–9.CrossRefGoogle ScholarPubMed
Vohr, B. R., Lipsitt, L. P., Oh, W.Somatic growth of children of diabetic mothers with reference to birth size. J. Pediatr. 1980:97:196–9.CrossRefGoogle ScholarPubMed
Gerlini, G., Arachi, S., Gori, M. G.et al.Developmental aspects of the offspring of diabetic mothers. Acta Endocrinol. Suppl. 1986;277:150–5.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×