Published online by Cambridge University Press: 10 December 2009
Introduction
Glucose is an important, if not the sole, source of energy metabolism in the fed state for brain and other nervous tissue, red blood cells, renal medulla, and retina. Assimilation of diet-derived glucose is necessary to provide glucose per se for these tissues, to serve as a source of nonprotein energy, and to stimulate normal rates of insulin secretion required to adequately suppress protein degradation and excessive lipolysis, and to stimulate protein synthesis. Carbohydrate contributes approximately 40% of the energy intake in infants ingesting human milk or cow milk-based formulas, and lactose provides perhaps the sole source of diet-derived glucose in human milk and about 50% of the diet-derived glucose in preterm formulas.
Dietary carbohydrate is assimilated via the intestine and colon in humans of all ages, but in the preterm newborn or young infant with defective function of the small intestine, bacterial fermentation of dietary carbohydrate is an especially quantitatively important metabolic pathway for enteral carbohydrate assimilation. This process may have both beneficial and adverse effects on the infant. Figure 22.1 summarizes carbohydrate assimilation by the gut. Lactose, like other dietary sugars fed to newborn infants (such as glucose polymer), is digested in the small intestine but also may undergo some fermentation in the colon. Glucose and galactose, derived from lactose digestion, are absorbed in the small intestine, enter the portal vein, and then undergo uptake by the liver, where galactose is almost quantitatively removed by the combined processes of conversion to glucose or incorporation into glycogen.
To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.
Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.
Find out more about the Kindle Personal Document Service.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.
To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.