Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T15:41:02.646Z Has data issue: false hasContentIssue false

16 - Disorders of mineral, vitamin D and bone homeostasis

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
Oussama Itani
Affiliation:
Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI
Reginald Tsang
Affiliation:
Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Disorders of mineral homeostasis

Fetal mineral homeostasis is closely linked to that of the mother. In the pregnant woman and the fetus there is an intimate and delicate relationship amongst the calciotropic hormones, growth factors, and the minerals Ca, P, and Mg. Any perturbation of maternal or placental homeostatic mineral balance may affect that of the fetus and may have metabolic sequelae in the fetus manifesting in the neonatal period and infancy.

Disorders of calcium homeostasis

A wide variety of factors can cause significant disturbances in calcium and bone homeostasis in the fetus and neonate.

Maternal hypocalcemia

Maternal hypocalcemia results in fetal hypocalcemia, which stimulates the fetal parathyroid glands to synthesize and secrete more parathyroid hormone (PTH to achieve normocalcemia. PTH does not appear to cross the placenta in either direction. Causes of maternal hypocalcemia are listed in Table 16.1. Impaired secretion of PTH because of hypoparathyroidism or magnesium depletion and resistance to PTH because of mutant receptors, as in pseudohypoparathyroidism, result in maternal hypocalcemia. Hypocalcemia may also be a manifesting feature of abnormal vitamin D deficiency; in particular, maternal vitamin D deficiency may be caused by insufficient sunlight exposure, inadequate dietary intake, or malabsorption. Maternal liver disease may be associated with defective 25-hydroxylase activity resulting in low serum 25-hydroxyvitamin D (25-OHD) concentration, hypocalcemia, and rickets.

Defective 1 alpha-hydroxylase activity may be caused by renal or parathyroid gland diseases.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Crowder, J. A., Frieden, I. J., Price, V. H.Alopecia areata in infants and newborns. Pediatr. Dermatol. 2002;19:155–8.CrossRefGoogle ScholarPubMed
Loughead, J., Mimouni, F., Tsang, R.Serum ionized calcium concentrations in normal neonates. Am. J. Dis. Child. 1988;142:516–18.Google ScholarPubMed
Rubin, L., Posillico, J., Anast, C., Brown, E.Circulating levels of biologically active and immunoreactive intact parathyroid hormone in human newborns. Pediatr. Res. 1991;29:201–7.CrossRefGoogle ScholarPubMed
Venkataraman, P., Tsang, R., Chen, I., Sperling, M.Pathogenesis of early neonatal hypocalcemia: studies of serum calcitonin, gastrin and plasma glucagon. J. Pediatr. 1987;110:599–603.CrossRefGoogle ScholarPubMed
Tsang, R., Chen, I., Friedman, M.et al.Neonatal parathyroid function: role of gestational age and postnatal age. J. Pediatr. 1973;83:728–38.CrossRefGoogle ScholarPubMed
Tsang, R., Oh, W.Serum magnesium levels in low birth weight infants. Am. J. Dis. Child. 1970;120:44–8.Google ScholarPubMed
David, L., Salle, B., Chopard, P., Grafmeyer, D.Studies on circulating immunoreactive calcitonin in low birth weight infants during the first 48 hours of life. Helv. Paediatr. Acta. 1977;32:39–43.Google Scholar
Hillman, L., Rojanasathit, S., Slatopolsky, E., Haddad, J.Serial measurements of serum calcium, magnesium, parathyroid hormone, calcitonin, and 25-hydroxyvitamin D in premature and term infants during the first week of life. Pediatr. Res. 1977;11:739–44.CrossRefGoogle Scholar
Romagnoli, C., Zecca, E., Tortorolo, G.et al.Plasma thyrocalcitonin and parathyroid hormone concentrations in early neonatal hypocalcemia. Arch. Dis. Child. 1987;62:580–4.CrossRefGoogle Scholar
Mimouni, F., Loughead, J., Tsang, R.et al.The role of calcitonin (calcitonin) in neonatal hypocalcemia (NHC) in infants of diabetic mothers (infants of diabetic mothers's). Pediatr. Res. 1989;25:89A.Google Scholar
Mimouni, F., Mimouni, C., Loughead, J., Tsang, R. A case-control study of hypocalcemia in high-risk neonates: racial, but no seasonal differences. J. Am. Coll. Nutr. 1991;10:196–9.CrossRefGoogle Scholar
Tsang, R. C., Chen, I., Hayes, W.et al.Neonatal hypocalcemia in infants with birth asphyxia. J. Pediatr. 1974;84:428–33.CrossRefGoogle ScholarPubMed
Allgrove, J., Adami, S., Fraher, L.et al.Hypomagnesemia: studies of parathyroid hormone secretion and function. Clin. Endocrinol. 1984;21:435–49.CrossRefGoogle Scholar
Noguchi, A., Eren, M., Tsang, R.Parathyroid hormone in hypocalcemic and normocalcemic infants of diabetic mothers. J. Pediatr. 1980;97:112–17.CrossRefGoogle ScholarPubMed
Tsang, R., Kleinman, L., Sutherland, J.et al.Hypocalcemia in infants of diabetic mothers: studies in Ca, P and Mg metabolism and in parathyroid hormone responsiveness. J. Pediatr. 1972;80:384–95.CrossRefGoogle Scholar
Tsang, R.Neonatal magnesium disturbances. Am. J. Dis. Child. 1972;124:282–93.Google ScholarPubMed
Bergman, L., Kjellmer, I., Seltam, U.Calcitonin and parathyroid hormone. Relation to early neonatal hypocalcemia in infants of diabetic mothers. Biol. Neonate. 1974;24:151–60.CrossRefGoogle ScholarPubMed
Mimouni, F., Steichen, J. J., Tsang, R. C., Hertzberg, V., Miodovnik, M.Decreased bone mineral content in infants of diabetic mothers. Am. J. Perinatol. 1988;5:339–43.CrossRefGoogle ScholarPubMed
Namgung, R., Tsang, R. C.Factors affecting newborn bone mineral content: in utero effects on newborn bone mineralizations. Proc. Nutr. Soc. 2000;59:55–63.CrossRefGoogle Scholar
Lapillonne, A., Guerin, S., Braillon, P.et al.Whole body bone mineral content and body composition in infants of diabetic mothers. J. Clin. Endocrinol. Metab. 1997;82:3993–7.CrossRefGoogle Scholar
Salle, B. L., Delvin, E. E., Lapillonne, A., Bishop, N. J., Glorieux, F. H.Perinatal metabolism of vitamin D. Am. J. Clin. Nutr. 2000;71:1317S–24S.CrossRefGoogle ScholarPubMed
Tsang, R. C., Gigger, M., Oh, W., Brown, D. R.Studies in calcium metabolism in infants with intrauterine growth retardation. J. Pediatr. 1975;86:936–41.CrossRefGoogle ScholarPubMed
Tsang, R. C., Oh, W.Neonatal hypocalcemia in low birth weight infants. Pediatrics 1970;45:773–81.Google ScholarPubMed
Lapillonne, A., Braillon, P., Claris, O.et al.Body composition in appropriate and in small for gestational age infants. Acta Paediatr. 1997;86:196–200.CrossRefGoogle ScholarPubMed
Romagnoli, C., Polidori, G., Cataldi, L., Tortorolo, G., Segni, G.Phototherapy-induced hypocalcemia. J. Pediatr. 1979;94:815–16.CrossRefGoogle ScholarPubMed
Hakanson, D. O., Bergstrom, W. H. Prevention of light-induced hypocalcemia by melatonin. In Norman, A. W., ed. Vitamin D, Chemical, Biochemical and Clinical Endocrinology of Calcium Metabolism. New York: Walter de Gruyter; 1982:1163–5.Google Scholar
Hakanson, D. O., Bergstrom, W. H.Pineal and adrenal effects on calcium homeostasis in the rat. Pediatr. Res. 1990;27:571–3.CrossRefGoogle ScholarPubMed
Hahn, T.Drug-induced disorders of vitamin D and mineral metabolism. Clin. Endocrinol. Metab. 1980;9:107–29.CrossRefGoogle ScholarPubMed
Markestad, T., Ulstein, M., Stanjord, R.Anticonvulsant drug in human pregnancy: effects on serum concentrations of vitamin D metabolites in maternal and cord blood. Am. J. Obstet. Gynecol. 1984;150:254–8.CrossRefGoogle ScholarPubMed
Stamp, T.Effects of long-term anticonvulsant therapy on calcium and vitamin D metabolism. Proc. R. Soc. Med. 1979;67:64–8.Google Scholar
Brown, D. R., Tsang, R. C., Chen, I.Oral calcium supplementation in premature and asphyxiated neonates. J. Pediatr. 1976;89:973–7.CrossRefGoogle Scholar
David, L., Anast, C. S.Calcium metabolism in newborn infants. The interrelationship of parathyroid function and calcium, magnesium, and phosphorus metabolism in normal, “sick,” and hypocalcemic newborns. J. Clin. Invest. 1974;54:287–96.CrossRefGoogle ScholarPubMed
Rosen, J. F., Roginsky, M., Nathenson, G., Finberg, L.25-hydroxyvitamin D. Plasma levels in mothers and their premature infants with neonatal hypocalcemia. Am. J. Dis. Child. 1974;127:220–3.CrossRefGoogle ScholarPubMed
Fleischman, A. R., Rosen, J. F., Nathenson, G.25-Hydroxycholecalciferol for early neonatal hypocalcemia. Occurrence in premature newborns. Am. J. Dis. Child. 1978;132:973–7.CrossRefGoogle ScholarPubMed
Chan, G. M., Tsang, R. C., Chen, I. W., DeLuca, H. F., Steichen, J. J.The effect of 1,25(OH)2 vitamin D3 supplementation in premature infants. J. Pediatr. 1978;93:91–6.CrossRefGoogle ScholarPubMed
Hillman, L. S., Haddad, J. G.Perinatal vitamin D metabolism. II. Serial 25-hydroxyvitamin D concentrations in sera of term and premature infants. J. Pediatr. 1975;86:928–35.CrossRefGoogle ScholarPubMed
Park, W., Paust, H., Kaufmann, H., Offermann, G.Osteomalacia of the mother – rickets of the newborn. Eur. J. Pediatr. 1987;146:292–3.CrossRefGoogle Scholar
Sann, L., David, L., Frederick, A.et al.Congenital rickets. Acta Paediatr. Scan. 1977;66:323–7.CrossRefGoogle ScholarPubMed
Moncrieff, M., Fadahunsi, T.Congenital rickets due to maternal rickets due to maternal vitamin D deficiency. Arch. Dis. Child. 1974;49:810–11.CrossRefGoogle ScholarPubMed
Ford, J., Davidson, D., McIntosh, W., Fyfe, W. M., Dunnigan, M. G.Neonatal rickets in Asian immigrant population. Br. Med. J. 1973;3:211–2.CrossRefGoogle ScholarPubMed
Teotia, M., Teotia, S. P., Nath, M.Metabolic studies in congenital vitamin D deficiency rickets. Indian J. Pediatr. 1995;62:55–61.CrossRefGoogle ScholarPubMed
Anatoliotaki, M., Tsilimigaki, A., Tsekoura, T.et al.Congenital rickets due to maternal vitamin D deficiency in a sunny island of Greece. Acta Paediatr. 2003;92:389–91.CrossRefGoogle Scholar
Maiyegun, S. O., Malek, A. H., Devarajan, L. V., Dahniya, M. H.Severe congenital rickets secondary to maternal hypovitaminosis D: a case report. Ann. Trop. Paediatr. 2002;22:191–5.CrossRefGoogle ScholarPubMed
Mohapatra, A., Sankaranarayanan, K., Kadam, S. S.et al.Congenital rickets. J. Trop. Pediatr. 2003;49:126–7.CrossRefGoogle ScholarPubMed
Begum, R., Coutinho, M., Dormandy, T., Yudkin, S.Maternal malabsorption presenting as congenital rickets. Lancet 1968;1:1048–52.CrossRefGoogle ScholarPubMed
Al-Senan, K., Al-Alaiyan, S., Al-Abbad, A., LeQuesne, G.Congenital rickets secondary to untreated maternal renal failure. J. Perinatol. 2001;21:473–5.CrossRefGoogle ScholarPubMed
Levin, T. L., States, L., Greig, A., Goldman, H. S.Maternal renal insufficiency: a cause of congenital rickets and secondary hyperparathyroidism. Pediatr. Radiol. 1992;22:315–16.CrossRefGoogle ScholarPubMed
Wang, L. Y., Hung, H. Y., Hsu, C. H., Hih, S. L., Lee, Y. J.Congenital rickets: a patient report. J. Pediatr. Endocrinol Metab. 1997;10:437–41.CrossRefGoogle ScholarPubMed
Kirk, J.Congenital rickets: a case report. Aust. Pediatr. J. 1982;18:291–3.Google ScholarPubMed
Rimensberger, P., Schubiger, G., Willi, U.Connatal rickets following repeated administration of phosphate enemas in pregnancy: a case report. Eur. J. Pediatr. 1992;151:54–6.CrossRefGoogle ScholarPubMed
Wilson, R. D., Martin, T., Christensen, R., Yee, A. H., Reynolds, C.Hyperparathyroidism in pregnancy: case report and review of the literature. Can. Med. Assoc. J. 1983;129:986–9.Google ScholarPubMed
Ozsoylu, S., Bilginturan, N.Maternal hyperparathyroidism and neonatal rickets. J. Pediatr. 1989;114:508–9.CrossRefGoogle ScholarPubMed
Hanukoglu, A., Chalew, S., Kowarski, A.Late-onset hypocalcemia, rickets, and hypoparathyroidism in an infant of a mother with hyperparathyroidism. J. Pediatr. 1988;112:751–4.CrossRefGoogle Scholar
Monteleone, J., Lee, J., Tashjian, A., Cantor, H.Transient neonatal hypocalcemia, hypomagnesemia, and high serum parathyroid hormone with maternal hyperparathyroidism. Ann. Intern. Med. 1975;82:670–2.CrossRefGoogle ScholarPubMed
Jacobson, B., Terslev, E., Lund, B., Sorensen, O.Neonatal hypocalcemia associated with maternal hyperparathyroidism. Arch. Dis. Child. 1978;53:308–11.CrossRefGoogle Scholar
Kooh, S., Jones, G., Reilly, B.Pathogenesis of rickets in chronic hepatobiliary disease in children. J. Pediatr. 1979;94:870–4.CrossRefGoogle ScholarPubMed
Long, R., Skinner, R., Wills, M.et al.Serum 25-hydroxyvitamin D in untreated parenchymal and cholestatic liver disease. Lancet 1976;2:650–2.CrossRefGoogle Scholar
Yu, J., Walker-Smith, J., Burnard, E.Rickets, a common complication of neonatal hepatitis. Med. J. Aust. 1971;1:790–2.Google ScholarPubMed
Portale, A., Booth, B., Tsai, H., Morris, R. C. Jr.Reduced plasma concentration of 1,25-dihydroxyvitamin D in children with moderate renal insufficiency. Kidney Int. 1982;21:627–32.CrossRefGoogle ScholarPubMed
Chesney, R., Hamstra, A., Mazess, R., Rose, P., DeLuca, H. F.Circulating vitamin D metabolite concentration in childhood renal disease. Kidney Int. 1982;21:65–9.CrossRefGoogle Scholar
Scriver, C., Reade, T., DeLuca, H., Hamstra, A.Serum 1,25-dihydroxyvitamin D levels in normal subjects and in patients with hereditary rickets or bone disease. N. Engl. J. Med. 1978;299:976–9.CrossRefGoogle ScholarPubMed
Fraser, D., Kooh, S., Kind, H.et al.Pathogenesis of hereditary vitamin D-dependent rickets. An inborn error of vitamin D metabolism involving defective conversion of 25-hydroxyvitamin D to 1,25-dihydroxyvitamin D. N. Engl. J. Med. 1973;289:817–22.CrossRefGoogle Scholar
Feldman, D., Chen, T., Cone, C.et al.Vitamin D resistant rickets with alopecia: cultured skin fibroblasts exhibit defective cytoplasmic receptors and unresponsiveness to 1,25(OH)2D3. J. Clin. Endocrinol. Metab. 1982;55:1020–2.CrossRefGoogle ScholarPubMed
Anast, C., Winnacker, J., Forte, L., Burns, T.Impaired release of parathyroid hormone in magnesium deficiency. J. Clin. Endocrinol. Metab. 1976; 42:707–17.CrossRefGoogle ScholarPubMed
Baron, J., Winer, K. K., Yanovski, J. A.et al.Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum. Mol. Genet. 1996;5:601–6.CrossRefGoogle ScholarPubMed
Luca, F., Ray, K., Mancilla, E. E.et al.Sporadic hypoparathyroidism caused by de Novo gain-of-function mutations of the Ca(2+)-sensing receptor. J. Clin. Endocrinol. Metab. 1997;82:2710–15.Google ScholarPubMed
Cardenas-Rivero, N., Chernow, B., Stoiko, M., Nussbaum, S., Todres, D.Hypocalcemia in critically ill children. J. Pediatr. 1989;114:946–51.CrossRefGoogle ScholarPubMed
Sanchez, G., Venkataraman, P., Pryor, R.et al.Hypercalcitoninemia and hypocalcemia in acutely ill children: studies in serum calcium, blood ionized calcium, and calcium-regulating hormones. J. Pediatr. 1989;114:952–6.CrossRefGoogle ScholarPubMed
Weidner, N., Santa-Cruz, D.Phosphaturic mesenchymal tumors: a polymorphous group causing osteomalacia or rickets. Cancer 1987;59:1442–52.3.0.CO;2-Q>CrossRefGoogle ScholarPubMed
Skovby, F., Svejgaard, E., Moller, J.Hypophosphatemic rickets in linear sebaceous nevus sequence. J. Pediatr. 1987;111:855–7.CrossRefGoogle ScholarPubMed
Aschinberg, L., Solomon, L., Zeis, P.et al.Vitamin D resistant rickets associated with epidermal nevus syndrome: demonstration of a phosphaturic substance in the dermal lesions. J. Pediatr. 1977;91:56–60.CrossRefGoogle ScholarPubMed
Olivares, J. L., Ramos, F. J., Carapeto, F. J., Bueno, M.Epidermal naevus syndrome and hypophosphataemic rickets: description of a patient with central nervous system anomalies and review of the literature. Eur. J. Pediatr. 1999;158:103–7.CrossRefGoogle ScholarPubMed
Ryan, E., Reiss, E.Oncogenous osteomalacia. Am. J. Med. 1984;77:501.CrossRefGoogle ScholarPubMed
Ivker, R., Resnick, S. D., Skidmore, R. A.Hypophosphatemic vitamin D-resistant rickets, precocious puberty, and the epidermal nevus syndrome. Arch. Dermatol. 1997;133:1557–61.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Tsang, R. C., Greer, F. R.et al.Late infantile tetany and secondary hyperparathyroidism in infants fed humanized cow milk formula. Longitudinal follow-up. Am. J. Dis. Child. 1985;139:664–8.CrossRefGoogle ScholarPubMed
Pierson, J. D., Crawford, J. D.Dietary dependent neonatal hypocalcemia. Am. J. Dis. Child. 1972;123:472–4.Google ScholarPubMed
Powell, B., Buist, N.Late presenting, prolonged hypocalcemia in an infant of a woman with hypocalciuric hypercalcemia. Clin. Pediatr. 1990;29:241–3.CrossRefGoogle Scholar
Marx, S., Attie, M., Levine, M.The hypocalciuric or benign variant of familial hypercalcemia: clinical and biochemical features in fifteen kindreds. Medicine 1980;60:397–412.CrossRefGoogle Scholar
Popp, D., Zieger, B., Schmitt-Graff, A., Nutzenadel, W., Schaefer, F.Malignant osteopetrosis obscured by maternal vitamin D deficiency in a neonate. Eur. J. Pediatr. 2000;159:412–15.CrossRefGoogle Scholar
Chen, C. J., Lee, M. Y., Hsu, M. L., Lien, S. H., Cheng, S. N.Malignant infantile osteopetrosis initially presenting with neonatal hypocalcemia: case report. Ann. Hematol. 2003;82:64–7.Google ScholarPubMed
Srinivasan, M., Abinun, M., Cant, A. J.et al.Malignant infantile osteopetrosis presenting with neonatal hypocalcaemia. Arch. Dis. Child Fetal Neonat. Edn. 2000;83:F21–3.CrossRefGoogle ScholarPubMed
Gribetz, D.Hypocalcemic states in infancy and childhood. Am. J. Dis. Child. 1957;94:301–12.Google ScholarPubMed
Mizrahi, A., London, R. D., Gribetz, D.Neonatal hypocalcemia – its causes and treatment. N. Engl. J. Med. 1968;278:1163–65.CrossRefGoogle ScholarPubMed
Anast, C., Mohs, J., Kaplan, S., Burns, T.Evidence for parathyroid failure in magnesium deficiency. Science 1972;177:606–8.CrossRefGoogle ScholarPubMed
Maisels, M. J., Li, T. K., Piechocki, J. T., Werthman, M. W.The effect of exchange transfusion on serum ionized calcium. Pediatrics 1974;53:683–6.Google ScholarPubMed
Wieland, P., Duc, G., Binswanger, U., Fischer, J. A.Parathyroid hormone response in newborn infants during exchange transfusion with blood supplemented with citrate and phosphate: effect of IV calcium. Pediatr. Res. 1979;13:963–8.CrossRefGoogle ScholarPubMed
Dincsoy, M. Y., Tsang, R. C., Laskarzewski, P.et al.Serum calcitonin response to administration of calcium in newborn infants during exchange blood transfusion. J. Pediatr. 1982;100:782–6.CrossRefGoogle ScholarPubMed
Dincsoy, M. Y., Tsang, R. C., Laskarzewski, P.et al.The role of postnatal age and magnesium on parathyroid hormone responses during “exchange” blood transfusion in the newborn period. J. Pediatr. 1982;100:277–83.CrossRefGoogle ScholarPubMed
Robertson, W. C. Jr.Calcium carbonate consumption during pregnancy: an unusual cause of neonatal hypocalcemia. J. Child. Neurol. 2002;17:853–5.
Moudgil, A., Kishore, K., Srivastava, R. N.Neonatal lupus erythematosus, late onset hypocalcaemia, and recurrent seizures. Arch. Dis. Child. 1987;62:736–9.CrossRefGoogle ScholarPubMed
Nervez, C. T., Shott, R. J., Bergstrom, W. H., Williams, M. L.Prophylaxis against hypocalcemia in low-birth-weight infants requiring bicarbonate infusion. J. Pediatr. 1975;87:439–42.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Tsang, R. C., Steichen, J. J.et al.Early neonatal hypocalcemia in extremely preterm infants. High incidence, early onset, and refractoriness to supraphysiologic doses of calcitriol. Am. J. Dis. Child. 1986;140:1004–8.CrossRefGoogle ScholarPubMed
Salle, B. L., David, L., Glorieux, F. H.et al.Early oral administration of vitamin D and its metabolites in premature neonates. Effect on mineral homeostasis. Pediatr. Res. 1982;16:75–8.CrossRefGoogle ScholarPubMed
Koo, W. W., Tsang, R. C., Poser, J. W.et al.Elevated serum calcium and osteocalcin levels from calcitriol in preterm infants. A prospective randomized study. Am. J. Dis. Child. 1986;140: 1152–8.CrossRefGoogle ScholarPubMed
Willis, D. M., Chabot, J., Radde, I. C., Chance, G. W.Unsuspected hyperosmolality of oral solutions contributing to necrotizing enterocolitis in very-low-birth-weight infants. Pediatrics 1977;60:535–8.Google ScholarPubMed
Book, L. S., Herbst, J. J., Stewart, D.Hazards of calcium gluconate therapy in the newborn infant: intra-arterial injection producing intestinal necrosis in rabbit ileum. J. Pediatr. 1978;92:793–7.CrossRefGoogle ScholarPubMed
Habener, J., Potts, J. J. Primary hyperparathyroidism: clinical features. In DeGroot, L., ed. Endocrinology, vol. 2. Philadelphia, PA: W. B. Saunders; 1989:954.Google Scholar
Mundy, G., Shapiro, J., Bandelin, J.et al.Direct stimulation of bone resorption by thyroid hormones. J. Clin. Invest. 1976;58:529–34.CrossRefGoogle ScholarPubMed
Muls, E., Bouillon, R., Boelaert, J.et al.Etiology of hypercalcemia in a patient with Addison's Disease. Calcif. Tissue Int. 1982;34:523–6.CrossRefGoogle Scholar
Farrell, P., Rikkers, H., Moel, D.Cortisol dihydrotachysterol antagonism in a patient with hypoparathyroidism and adrenal insufficiency: apparent inhibition of bone resorption. J. Clin. Endocrinol. Metab. 1976;42:953–7.CrossRefGoogle Scholar
Miller, S., Sizemore, G., Sheps, S., Tyce, G.Parathyroid function in patients with pheochromocytoma. Ann. Intern. Med. 1975;82:372–5.CrossRefGoogle ScholarPubMed
Warner, J., Epstein, M., Sweet, A.et al.Genetic testing in familial isolated hyperparathyroidism: unexpected results and their implications. J. Med. Genet. 2004;41:155–60.CrossRefGoogle ScholarPubMed
Speer, G., Toth, M., Niller, H. H.et al.Calcium metabolism and endocrine functions in a family with familial hypocalciuric hypercalcemia. Exp. Clin. Endocrinol. Diabetes 2003;111:486–90.CrossRefGoogle Scholar
Kifor, O., Moore, F. D. Jr, Delaney, M.et al.A syndrome of hypocalciuric hypercalcemia caused by autoantibodies directed at the calcium-sensing receptor. J. Clin. Endocrinol. Metab. 2003;88:60–72.CrossRefGoogle ScholarPubMed
Hohmann, E., Levine, L., Tashijian, A. H. Jr.Vasoactive intestinal peptide stimulates bone resorption via a cyclic adenosine 3′,5′-monophosphate- dependent mechanism. Endocrinology 1983;112:1233–9.CrossRefGoogle Scholar
Duarte, C. G., Winnacker, J. L., Becker, K. L., Pace, A.Thiazide-induced hypercalcemia. N. Engl. J. Med. 1971;284:828.CrossRefGoogle ScholarPubMed
Brickman, A., Massry, S., Coburn, J.Changes in serum and urinary calcium during treatment with hydrochlorothiazide: studies on mechnisms. J. Clin. Invest. 1972;51:945–54.CrossRefGoogle Scholar
Mallette, L., Eichhorn, E.Effects of lithium carbonate on human calcium metabolism. Arch. Intern. Med. 1986;146:770–6.CrossRefGoogle ScholarPubMed
Orwoll, E.The milk-alkali syndrome: current concepts. Ann. Intern. Med. 1982;97:242–8.CrossRefGoogle ScholarPubMed
Bell, N., Shary, J., Shaw, S., Turner, R.Hypercalcemia associated with increased circulating 1,25-dihydroxyvitamin D in a patient with pulmonary tuberculosis. Calcif. Tissue Int. 1985;37:588–91.CrossRefGoogle Scholar
Bell, N., Stern, P., Pantzer, E., Sinha, T. K., DeLuca, H. F.Evidence that increased circulating 1,25-dihydroxyvitamin D is the probable cause for abnormal calcium metabolism in sarcoidosis. J. Clin. Invest. 1979;64:218–25.CrossRefGoogle Scholar
Suva, L., Winslow, G., Wettenhall, R.et al.A parathyroid hormone-related protein implicated in malignant hypercalcemia: cloning and expression. Science 1987;237:893–6.CrossRefGoogle ScholarPubMed
Breslau, N., McGuire, J., Zerwekh, J., Frenkel, E. P., Pak, C. Y.Hypercalcemia associated with increased serum calcitriol levels in three patients with lymphoma. Ann. Intern. Med. 1984;100:1–6.CrossRefGoogle ScholarPubMed
Garrett, I., Durie, B., Nedwin, G.et al.Production of the bone resorbing cytokine lymphotoxin by cultured human myeloma cells. N. Engl. J. Med. 1987;317:526–32.CrossRefGoogle ScholarPubMed
Sowers, M. G., Hollis, B. W., Shapiro, B.et al.Elevated parathyroid hormone-related peptide associated with lactation and bone density loss. J. Am. Med. Assoc. 1996;276:549–54.CrossRefGoogle ScholarPubMed
Specker, B., Tsang, R., Ho, M.Changes in calcium homeostasis over the first year postpartum: effect of lactation and weaning. Obstet. Gynecol. 1991;78:56–62.Google ScholarPubMed
Reid, I., Wattie, D., Evans, M., Budayr, A.Post-pregnancy osteoporosis associated with hypercalcemia. Clin. Endocrinol. 1992;37:298–303.CrossRefGoogle Scholar
Kent, G., Price, R., Gutterdge, D.et al.Human lactation: forearm trabecular bone loss, increased bone turnover, and renal conservation of calcium and inorganic phosphate with recovery of bone mass following weaning. J. Bone Min. Res. 1990;5:361–9.CrossRefGoogle ScholarPubMed
Stuart, C., Aceto, T. J., Kuhn, J., Terplan, K.Intrauterine hyperparathyroidism. Am. J. Dis. Child. 1979;133:67–70.CrossRefGoogle ScholarPubMed
Bronsky, D., Kiamko, R., Moncada, R.et al.Intrauterine hyperparathyroidism secondary to maternal hypoparathyroidism. Pediatrics 1972;42:606–13.Google Scholar
Glass, E., Barr, D.Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism. Arch. Dis. Child. 1981;56:565–8.CrossRefGoogle ScholarPubMed
Ozsoylu, S.Transient neonatal hyperparathyroidism secondary to maternal pseudohypoparathyroidism. Arch. Dis. Child. 1982;57:241.CrossRefGoogle ScholarPubMed
Gradus, D., LeRoith, D., Karplus, M.et al.Congenital hyperparathyroidism and rickets secondary to maternal hypoparathyroidism and vitamin D deficiency. Isr. J. Med. Sci. 1981;17:705–8.Google ScholarPubMed
Landing, B., Kamoshita, S.Congenital hyperparathyroidism secondary to maternal hypoparathyroidism. J. Pediatr. 1970;77:842–7.CrossRefGoogle ScholarPubMed
Loughead, J., Mughal, Z., Mimouni, F.et al.Spectrum and natural history of congenital hyperparathyroidism secondary to maternal hypocalcemia. Am. J. Perinatol. 1990;7:350–5.CrossRefGoogle ScholarPubMed
Spiegel, A., Harrisson, H., Marx, S.et al.Neonatal primary hyperparathyroidism with autosomal dominant inheritance. J. Pediatr. 1977;90:269–72.CrossRefGoogle ScholarPubMed
Goldbloom, R., Gillis, D., Prasad, M.Hereditary parathyroid hyperplasia: a surgical emergency of early infancy. Pediatrics 1972;49:514–23.Google ScholarPubMed
Dezateux, C. A., Hyde, J. C., Hoey, H. M.et al.Neonatal hyperparathyroidism. Eur. J. Pediatr. 1984;142:135–6.CrossRefGoogle ScholarPubMed
Auwerx, J., Brunzell, J., Bouillon, R., Demedts, M.Familial hypocalciuric hypercalcemia-familial benign hypercalcemia: a review. Postgrad. Med. J. 1987;63:835–40.CrossRefGoogle ScholarPubMed
Marx, S., Spiegel, A., Levine, M.et al.Familial hypocalciuric hypercalcemia: the relation to primary parathyroid hyperplasia. J. Med. 1982;307:416–26.Google ScholarPubMed
Marx, S., Attie, M., Spiegel, A.et al.An association between neonatal severe primary hyperparathyroidism and familial hypocalciuric hypercalcemia in three kindreds. N. Engl. J. Med. 1982;306:257–64.CrossRefGoogle ScholarPubMed
Matsuo, M., Okita, K., Takemine, H., Fujita, T.Neonatal primary hyperparathyroidism in familial hypocalciuric hypercalcemia. Am. J. Dis. Child. 1982;136:728–31.Google ScholarPubMed
Schwarz, P., Larsen, N. E., Friis, Lonborg I. M.et al.Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism associated with mutations in the human Ca2+-sensing receptor gene in three Danish families. Scand. J. Clin. Lab. Invest. 2000;60:221–7.CrossRefGoogle ScholarPubMed
Cooper, L., Wertheimer, J., Levey, R.et al.Severe primary hyperparathyroidism in a neonate with two hypercalcemic parents: management with parathyroidectomy and heterotopic autotransplantation. Pediatrics 1986;78:263–8.Google Scholar
Steinmann, B., Gnehm, H. E., Rao, V. H., Kind, H. P., Prader, A.Neonatal severe primary hyperparathyroidism and alkaptonuria in a boy born to related parents with familial hypocalciuric hypercalcemia. Helv. Paediatr. Acta. 1984;39:171–86.Google Scholar
Pollak, M. R., Chou, Y. H., Marx, S. J.et al.Familial hypocalciuric hypercalcemia and neonatal severe hyperparathyroidism. Effects of mutant gene dosage on phenotype. J. Clin. Invest. 1994;93:1108–12.CrossRefGoogle ScholarPubMed
Pearce, S. H., Trump, D., Wooding, C.et al.Calcium-sensing receptor mutations in familial benign hypercalcemia and neonatal hyperparathyroidism. J. Clin. Invest. 1995;96:2683–92.CrossRefGoogle ScholarPubMed
Marx, S., Frazer, D., Rapoport, A.Familial hypocalciuric hypercalcemia: mild expression of the gene in heterozygotes and severe expression in homozygotes. Am. J. Med. 1985;76:15–22.CrossRefGoogle Scholar
Fujita, T., Watanabe, N., Fukase, M.et al.Familial hypocalciuric hypercalcemia involving four members of a kindred including a girl with severe neonatal primary hyperparathyroidism. Miner. Electrolyte Metab. 1983;9:51–4.Google ScholarPubMed
Ross, A. J. 3rd, Cooper, A., Attie, M. F., Bishop, H. C.Primary hyperparathyroidism in infancy. J. Pediatr. Surg. 1986;21:493–9.CrossRefGoogle ScholarPubMed
Sopwith, A. M., Burns, C., Grant, D. B.et al.Familial hypocalciuric hypercalcaemia: association with neonatal primary hyperparathyroidism, and possible linkage with HLA haplotype. Clin. Endocrinol. (Oxf). 1984;21:57–64.CrossRefGoogle ScholarPubMed
Nishiyama, S., Tomoeda, S., Inoue, F., Ohta, T., Matsuda, I.Self-limited neonatal familial hyperparathyroidism associated with hypercalciuria and renal tubular acidosis in three siblings. Pediatrics 1990;86:421–7.Google ScholarPubMed
Carey, D., Jones, K., Parthemore, J., Deftos, L.Calcitonin secretion in congenital non-goitrous cretinism. J. Clin. Invest. 1980;65:892–5.CrossRefGoogle Scholar
Carey, D., Jones, K.Hypothyroidism and hypercalcemia. J. Pediatr. 1987;111:155–6.CrossRefGoogle ScholarPubMed
Tau, C., Garabedian, M., Farriaux, J.et al.Hypercalcemia in infants with congenital hypothyroidism and its relation to vitamin D and thyroid hormones. J. Pediatr. 1986;109:808–14.CrossRefGoogle ScholarPubMed
Demeester-Mirkine, N., Bergmann, P., Body, J., Corvilain, J.Calcitonin and bone mass status in congenital hypothyroidism. Calcif. Tissue Int. 1990;46:222–6.CrossRefGoogle ScholarPubMed
Marx, S., Swart, E., Hamstra, A.et al.Normal intrauterine development of the fetus of a woman receiving extraordinarily high doses of 1,25 dihydroxyvitamin D. J. Clin. Endocrinol. Metab. 1980;51:1138–42.CrossRefGoogle Scholar
Fisher, G., Skillern, P.Hypercalcemia due to hypervitaminosis A. J. Am. Med. Assoc. 1974;227:1413–14.CrossRefGoogle ScholarPubMed
Burman, K., Monchik, J., Earll, J., Wartofsky, L.Ionized and total serum calcium and parathyroid hormone in hyperthyroidism. Ann. Intern. Med. 1976;84:668–71.CrossRefGoogle ScholarPubMed
Mahomadi, M., Bivins, L., Becker, K.Effect of thiazides on serum calcium. Clin. Pharmacol. Ther. 1979;26:390–4.CrossRefGoogle Scholar
Sann, L., David, L., Loras, B.et al.Neonatal hypercalcemia in preterm infants fed with human milk. Helv. Paediatr. Acta. 1985;40:117–26.Google ScholarPubMed
Rowe, J., Carey, D.Phosphorus deficiency syndrome in very low birth weight infants. Pediatr. Clin. N. Am. 1987;34:997–1017.CrossRefGoogle ScholarPubMed
Fraser, D.Hypophosphatasia. Am. J. Med. 1957;22:730–46.CrossRefGoogle ScholarPubMed
Whyte, M.Heritable metabolic and dysplastic bone diseases. Endocrinol. Metab. Clin. N. Am. 1990;19:133–73.Google ScholarPubMed
Bartter, F., Pronove, P., Gill, J.et al.Hyperplasia of the juxtaglomerular complex with hyperaldosteronism and hypokalemic alkalosis: a new syndrome. Am. J. Med. 1962;33:811–28.CrossRefGoogle ScholarPubMed
Stein, J.The pathogenetic spectrum of Bartter's syndrome. Kidney Int. 1985;28:85–93.CrossRefGoogle ScholarPubMed
deRovetto, Restrepo C., Welch, T., Hug, G.et al.Hypercalciuria with Bartter syndrome: evidence for an abnormality of vitamin D metabolism. J. Pediatr. 1989;115:397–404.CrossRefGoogle Scholar
Shoemaker, L., Welch, T., Bergstrom, W.et al.Calcium kinetics in the hyperprostaglandin E syndrome. Pediatr. Res. 1993;33:92–6.CrossRefGoogle ScholarPubMed
Konrad, M., Leonhardt, A., Hensen, P., Seyberth, H. W., Kockerling, A.Prenatal and postnatal management of hyperprostaglandin E syndrome after genetic diagnosis from amniocytes. Pediatrics 1999;103:678–83.CrossRefGoogle Scholar
Konrad, M., Vollmer, M., Lemmink, H. H.et al.Mutations in the chloride channel gene CLCNKB as a cause of classic Bartter syndrome. J. Am. Soc. Nephrol. 2000;11:1449–59.Google ScholarPubMed
Peters, M., Ermert, S., Jeck, N.et al.Classification and rescue of ROMK mutations underlying hyperprostaglandin E syndrome/antenatal Bartter syndrome. Kidney Int. 2003;64:923–32.CrossRefGoogle Scholar
Yamada, M., Matsumoto, T., Takahashi, N.et al.Stimulatory effect of prostaglandin E2 on 1-alpha, 25-dihydroxyvitamin D3 synthesis in rats. Biochem. J. 1983;216:237–40.CrossRefGoogle ScholarPubMed
Wark, J., Taft, J., Michelangeli, V.et al.Biphasic action of prostaglandin E2 on conversion of 25-hydroxyvitamin D3 to 1,25-dihydroxyvitamin D3 in chick renal tubules. Prostaglandins 1984;27:453–63.CrossRefGoogle ScholarPubMed
Kurose, H., Sonn, Y., Jafari, A.et al.Effects of prostaglandin E2 and indomethacin on 25-hydroxyvitamin D3-1-alpha-hydroxylase activity in isolated kidney cells of normal and streptozocin-induced diabetic rats. Calcif. Tissue Int. 1985;37:625–9.CrossRefGoogle Scholar
Matsumoto, J., Han, Kim B., deRovetto, Restrepo C., Welch, T.Hypercalciuric Bartter syndrome: resolution of nephrocalcinosis with indomethacin. Am. J. Radiol. 1989;152:1251–53.Google ScholarPubMed
Schurman, S. J., Bergstrom, W. H., Shoemaker, L. R., Welch, T. R.Angiotensin II reduces calcium uptake into bone. Pediatr. Nephrol. 2004;19:33–5.CrossRefGoogle ScholarPubMed
Martin, N., Snodgrass, G., Cohen, R.Idiopathic infantile hypercalcemia – a continuing enigma. Arch. Dis. Child. 1984;59:605–13.CrossRefGoogle ScholarPubMed
Jones, K. L., Smith, D. W.The Williams elfin facies syndrome: a new perspective. J. Pediatr. 1975;86:718–23.CrossRefGoogle ScholarPubMed
Aarskog, D., Aksnes, L., Markestad, T.Vitamin D metabolism in idiopathic infantile hypercalcemia. Am. J. Dis. Child. 1981;135:1021–4.Google ScholarPubMed
Chesney, R., DeLuca, H., Gertner, J.Increased plasma 1,25-dihydroxyvitamin D in infants with hypercalcemia and elfin facies. N. Engl. J. Med. 1985;313:889–90.Google Scholar
Garabedian, M., Jacqz, E., Guillozo, H.et al.Elevated plasma 1,25-dihydroxyvitamin D concentrations in infants with hypercalcemia and elfin facies. N. Engl. J. Med. 1985;312:948–52.CrossRefGoogle ScholarPubMed
Taylor, A., Stern, P., Bell, N.Abnormal regulation of circulating 25-hydroxyvitamin D in the Williams syndrome. N. Engl. J. Med. 1982;306:972–5.CrossRefGoogle ScholarPubMed
Culler, F., Jones, K., Deftos, L.Impaired calcitonin secretion in patients with Williams syndrome. J. Pediatr. 1985;107:720–3.CrossRefGoogle Scholar
Hicks, M. J., Levy, M. L., Alexander, J., Flaitz, C. M.Subcutaneous fat necrosis of the newborn and hypercalcemia: case report and review of the literature. Pediatr. Dermatol. 1993;10:271–6.CrossRefGoogle ScholarPubMed
Repiso-Jimenez, J. B., Marquez, J., Sotillo, I., Garcia-Bravo, B., Camacho, F.Subcutaneous fat necrosis of the newborn. J. Eur. Acad. Dermatol. Venereol. 1999;12:254–7.CrossRefGoogle ScholarPubMed
Friedman, S. J., Winkelmann, R. K.Subcutaneous fat necrosis of the newborn: light, ultrastructural and histochemical microscopic studies. J. Cutan. Pathol. 1989;16:99–105.CrossRefGoogle ScholarPubMed
Veldhuis, J., Kulin, H., Demers, L.et al.Infantile hypercalcemia with subcutaneous fat necrosis: endocrine studies. J. Pediatr. 1979;95:460–2.CrossRefGoogle ScholarPubMed
Barltrop, D.Hypercalcemia associated with neonatal subcutaneous fat necrosis. Arch. Dis. Child. 1963;38:516–18.CrossRefGoogle ScholarPubMed
Cook, J., Stone, M., Hansen, J.Hypercalcemia in association with subcutaneous fat necrosis of the newborn: studies of calcium-regulating hormones. Pediatrics 1992;90:93–6.Google ScholarPubMed
Finne, P., Sanderud, J., Aksnes, L., Bratlid, D., Aarskog, D.Hypercalcemia with increased and unregulated 1,25-dihydroxyvitamin D production in a neonate with subcutaneous fat necrosis. J. Pediatr. 1988;112:792–4.CrossRefGoogle Scholar
Kruse, K., Irle, U., Uhlig, R.Elevated 1,25-dihydroxyvitamin D serum concentrations in infants with subcutaneous fat necrosis. J. Pediatr. 1993;122:460–3.CrossRefGoogle ScholarPubMed
Burden, A. D., Krafchik, B. R.Subcutaneous fat necrosis of the newborn: a review of 11 cases. Pediatr. Dermatol. 1999;16:384–7.CrossRefGoogle ScholarPubMed
Tran, J. T., Sheth, A. P.Complications of subcutaneous fat necrosis of the newborn: a case report and review of the literature. Pediatr. Dermatol. 2003;20:257–61.CrossRefGoogle ScholarPubMed
Gu, L. L., Daneman, A., Binet, A., Kooh, S. W.Nephrocalcinosis and nephrolithiasis due to subcutaneous fat necrosis with hypercalcemia in two full-term asphyxiated neonates: sonographic findings. Pediatr. Radiol. 1995;25:142–4.CrossRefGoogle ScholarPubMed
Wiadrowski, T. P., Marshman, G.Subcutaneous fat necrosis of the newborn following hypothermia and complicated by pain and hypercalcaemia. Australas. J. Dermatol. 2001;42:207–10.CrossRefGoogle ScholarPubMed
Chuang, S. D., Chiu, H. C., Chang, C. C.Subcutaneous fat necrosis of the newborn complicating hypothermic cardiac surgery. Br. J. Dermatol. 1995;132:805–10.CrossRefGoogle ScholarPubMed
Glover, M. T., Catterall, M. D., Atherton, D. J.Subcutaneous fat necrosis in two infants after hypothermic cardiac surgery. Pediatr. Dermatol. 1991;8:210–12.CrossRefGoogle ScholarPubMed
Lee, S. K., Lee, J. H., Han, C. H.et al.Calcified subcutaneous fat necrosis induced by prolonged exposure to cold weather: a case report. Pediatr. Radiol. 2001;31:294–5.CrossRefGoogle ScholarPubMed
Dudink, J., Walther, F. J., Beekman, R. P.Subcutaneous fat necrosis of the newborn: hypercalcaemia with hepatic and atrial myocardial calcification. Arch. Dis. Child Fetal Neonat. Edn. 2003;88:F343–5.CrossRefGoogle ScholarPubMed
Barbier, C., Cneude, F., Deliege, R.et al.Subcutaneous fat necrosis in the newborn: a risk for severe hypercalcemia. Arch. Pediatr. 2003;10:713–15.CrossRefGoogle ScholarPubMed
Hung, S. H., Tsai, W. Y., Tsao, P. N., Chou, H. C., Hsieh, W. S.Oral clodronate therapy for hypercalcemia related to extensive subcutaneous fat necrosis in a newborn. J. Formos. Med. Assoc. 2003;102:801–4.Google Scholar
Khan, N., Licata, A., Rogers, D.Intravenous bisphosphonate for hypercalcemia accompanying subcutaneous fat necrosis: a novel treatment approach. Clin. Pediatr. (Phila). 2001;40:217–19.CrossRefGoogle ScholarPubMed
Bachrach, L. K., Lum, C. K.Etidronate in subcutaneous fat necrosis of the newborn. J. Pediatr. 1999;135:530–1.CrossRefGoogle ScholarPubMed
Gerritsen, J., Knol, K.Hypercalcemia in a child with miliary tuberculosis. Eur. J. Pediatr. 1989;148:650–1.CrossRefGoogle Scholar
Ferraro, E., Klein, S., Fakhry, J.et al.Hypercalcemia in association with mesoblastic nephroma: report of a case and review of the literature. Pediatr. Radiol. 1986;16:516–17.CrossRefGoogle ScholarPubMed
Jayabose, S., Iqbal, K., Newman, L.et al.Hypercalcemia in childhood renal tumors. Cancer 1988;62:303–8.Google Scholar
Woolfield, N., Abbott, G., McRae, C.A mesoblastic nephroma with hypercalcemia. Aust. Paediatr. J. 1988;24:309–10.Google Scholar
Shanbhogue, L., Gray, E., Miller, S.Congenital mesoblastic nephroma of infancy associated with hypercalcemia. J. Urol. 1986;135:771–2.CrossRefGoogle ScholarPubMed
Rousseau-Merck, M., Nogues, C., Roth, A.et al.Hypercalcemic infantile renal tumors: morphological, clinical, and biological heterogeneity. Pediatr. Pathol. 1985;3:155–64.CrossRefGoogle ScholarPubMed
Rousseau-Merck, M., DeKeyzer, Y., Bourdeau, A.et al.parathyroid hormonemRNA transcription analysis in infantile tumors associated with hypercalcemia. Cancer 1988;62:303–8.3.0.CO;2-K>CrossRefGoogle ScholarPubMed
Vido, L., Carli, M., Rizzoni, G., et al.Congenital mesoblastic nephroma with hypercalcemia: pathogenic role of prostaglandins. Am. J. Pediatr. Hematol. Oncol. 1986;8:149–52.Google Scholar
Calo, L., Cantaro, S., Bertazzo, L.et al.Synthesis and catabolism of PGE2 by a nephroblastoma associated with hypercalcemia without bone metastases. Cancer 1984;54:635–7.3.0.CO;2-M>CrossRefGoogle ScholarPubMed
Sagy, M., Birenbaum, E., Balin, A.et al.Phosphate-depletion syndrome in a premature infant fed human milk. J. Pediatr. 1980;96:683–5.CrossRefGoogle Scholar
Hall, R. T., Wheeler, R. E., Montalto, M. B., Benson, J. D.Hypophosphatemia in breast-fed low-birth-weight infants following initial hospital discharge. Am. J. Dis. Child. 1989;143:1191–5.Google ScholarPubMed
American Academy of Pediatrics. Committee on Nutrition. Soy protein-based formulas: recommendations for use in infant feeding. Pediatrics 1998;101:148–53.CrossRef
Naude, S. P., Prinsloo, J. G., Haupt, C. E.Comparison between a humanized cow's milk and a soy product for premature infants. S. Afr. Med. J. 1979;55:982–6.Google Scholar
Shenai, J. P., Jhaveri, B. M., Reynolds, J. W., Huston, R. K., Babson, S. G.Nutritional balance studies in very-low-birth-weight infants: role of soy formula. Pediatrics 1981;67:631–7.Google ScholarPubMed
Kulkarni, P. B., Hall, R. T., Rhodes, P. G.Rickets in very-low-birth-weight infants. J. Pediatr. 1980; 97:249–52.CrossRefGoogle Scholar
Callenbach, J. C., Sheehan, M. B., Abramson, S. J., Hall, R. T.Etiologic factors in rickets of very-low-birth-weight infants. J. Pediatr. 1981;98:800–5.CrossRefGoogle ScholarPubMed
Steichen, J. J., Tsang, R. C.Bone mineralization and growth in term infants fed soy-based or cow milk-based formula. J. Pediatr. 1987;110:687–92.CrossRefGoogle ScholarPubMed
Chan, G. M., Leeper, L., Book, L. S.Effects of soy formulas on mineral metabolism in term infants. Am. J. Dis. Child. 1987;141:527–30.Google ScholarPubMed
Bainbridge, R. R., Mimouni, F., Tsang, R. C.Bone mineral content of infants fed soy based formula. J. Pediatr. 1988;113:205–7.CrossRefGoogle ScholarPubMed
Fomon, S. J., Ziegler, E. E. Soy protein isolates in infant feeding. In Wilcke, H. L., Hopkins, D. T., Waggle, D. H., eds. Soy Protein and Human Nutrition. New York: Academic Press Inc; 1979;79–86.Google Scholar
Kohler, L., Meeuwisse, G., Mortensson, W.Food intake and growth of infants between six and twenty-six weeks of age on breast milk, cow's milk formula, or soy formula. Acta Paediatr. Scand. 1984;73:40–8.CrossRefGoogle ScholarPubMed
Fomon, S. J., Ziegler, E. E. Isolated soy protein in infant feeding. In Steinke, F. H., Waggle, D. H., Volgarev, M. N., eds. New Protein Foods in Human Health: Nutrition, Prevention, and Therapy. Boca Raton, FL: CRC Press Inc; 1992:75–83.Google Scholar
Hillman, L. S., Chow, W., Salmons, S. S.et al.Vitamin D metabolism, mineral homeostasis, and bone mineralization in term infants fed human milk-based formula or soy-based formula. J. Pediatr. 1988;112:864–8.CrossRefGoogle ScholarPubMed
Mimouni, F., Campaigne, B., Neylan, M., Tsang, R. C.Bone mineralization in the first year of life in infants fed human milk, cow-milk formula or soy-based formula. J. Pediatr. 1993;122:348–54.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Luhar, H., Neylan, M. J.Bone mineral metabolism in full-term infants fed human milk, cow milk-based, and soy-based formulas. Am. J. Dis. Child. 1992;146:1302–5.Google ScholarPubMed
Langlois, V., Bernard, C., Scheinman, S. J.et al.Clinical features of X-linked nephrolithiasis in childhood. Pediatr. Nephrol. 1998;12:625–9.CrossRefGoogle ScholarPubMed
Forino, M., Graziotto, R., Tosetto, E.et al.Identification of a novel splice site mutation of CLCN5 gene and characterization of a new alternative 5′ UTR end of ClC-5 mRNA in human renal tissue and leukocytes. J. Hum. Genet. 2004;49:53–60.CrossRefGoogle ScholarPubMed
Heath, H. 3rd.Familial benign (hypocalciuric) hypercalcemia. A troublesome mimic of mild primary hyperparathyroidism. Endocrinol. Metab. Clin. N. Am. 1989;18:723–40.Google ScholarPubMed
Pivnick, E. K., Kerr, N. C., Kaufman, R. A., Jones, D. P., Chesney, R. W.Rickets secondary to phosphate depletion. A sequela of antacid use in infancy. Clin. Pediatr. (Phila). 1995;34:73–8.CrossRefGoogle ScholarPubMed
Tseng, U. F.Shu, S. G., Chen, C. H., Chi, C. S.Transient neonatal hypoparathyroidism: report of four cases. Acta Paediatr. Taiwan 2001;42:359–62.Google ScholarPubMed
Tsang, R. C., Chen, I., Friedman, M. A.et al.Parathyroid function in infants of diabetic mothers. J. Pediatr. 1975;86:399–404.CrossRefGoogle ScholarPubMed
Manzar, S.Transient pseudohypoparathyroidism and neonatal seizure. J. Trop. Pediatr. 2001;47:113–14.CrossRefGoogle ScholarPubMed
Sajitha, S., Krishnamoorthy, P. N., Shenoy, U. V.Pseudohypoparathyroidism in newborn – a rare presentation. Indian Pediatr. 2003;40:47–9.Google ScholarPubMed
Minagawa, M., Yasuda, T., Kobayashi, Y., Niimi, H.Transient pseudohypoparathyroidism of the neonate. Eur. J. Endocrinol. 1995;133:151–5.CrossRefGoogle ScholarPubMed
Soumoy, M. P., Bachy, A.Risk of phosphate enemas in the infant. Arch. Pediatr. 1998;5:1221–3.CrossRefGoogle ScholarPubMed
Walton, D. M., Thomas, D. C., Aly, H. Z., Short, B. L.Morbid hypocalcemia associated with phosphate enema in a six-week-old infant. Pediatrics 2000;106:E37.CrossRefGoogle Scholar
Spatling, L., Disch, G., Classen, H. G.Magnesium in pregnant women and the newborn. Magnesium Res. 1989;2:271–80.Google ScholarPubMed
Doyle, W., Crawford, M., Wynn, A., Wynn, S.Maternal magnesium intake and pregnancy outcome. Magnesium Res. 1989;2:205–10.Google ScholarPubMed
Harris, I., Wilkinson, A.Magnesium depletion in children. Lancet 1971;2:735–6.CrossRefGoogle ScholarPubMed
Allen, D., Friedman, A., Greer, F., Chesney, R. W.Hypomagnesemia masking the appearance of elevated parathyroid hormone concentrations in familial pseudohypoparathyroidism. Am. J. Med. Genet. 1988;31:153–8.CrossRefGoogle ScholarPubMed
Allgrove, J., Adami, S., Fraher, L.et al.Hypomagnesemia: studies of parathyroid hormone secretion and function. Clin. Endocrinol. 1984;21: 435–49.CrossRefGoogle Scholar
Davis, J., Harvey, D., Yu, J.Neonatal fits associated with hypomagnesemia. Arch. Dis. Child. 1965;40:286–90.CrossRefGoogle Scholar
Cruikshank, D., Pitkin, R., Reynolds, W.et al.Altered maternal calcium homeostasis in diabetic pregnancy. J. Clin. Endocrinol. Metabol. 1980;50:264–7.CrossRefGoogle ScholarPubMed
Linderman, R., Adler, S., Yiengst, M., Beard, E.Influence of various nutrients on urinary divalent cation excretion. J. Lab. Clin. Med. 1967;70:236–45.Google Scholar
Aikawa, J.Effect of alloxan-induced diabetes on magnesium metabolism in rabbits. Am. J. Physiol. 1960;199:1084–6.Google ScholarPubMed
Mehta, K. C., Kalkwarf, H. J., Mimouni, F., Khoury, J., Tsang, R. C.Randomized trial of magnesium administration to prevent hypocalcemia in infants of diabetic mothers. J. Perinatol. 1998;18:352–6.Google ScholarPubMed
Saggese, G., Bertelloni, S., Baroncelli, G. I., Pelletti, A., Benedetti, U.Evaluation of a peptide family encoded by the calcitonin gene in selected healthy prenant women. A longitudinal study. Horm. Res. 1990;34:240–4.CrossRefGoogle Scholar
Bertelloni, S.The parathyroid hormone-1,25-dihydroxyvitamin D endocrine system and magnesium status in insulin-dependent diabetes mellitus: current concepts. Magnesium Res. 1992;5:45–51.Google ScholarPubMed
Abdulrazzaq, Y. M., Smigura, F. C., Wettrell, G.Primary infantile hypomagnesaemia; report of two cases and review of literature. Eur. J. Pediatr. 1989;148:459–61.CrossRefGoogle ScholarPubMed
Dudin, K. I., Teebi, A. S.Primary hypomagnesaemia. A case report and literature review. Eur. J. Pediatr. 1987;146:303–5.CrossRefGoogle ScholarPubMed
Friedman, M., Hatcher, G., Watson, L.Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet 1967;1:703–5.CrossRefGoogle ScholarPubMed
Prebble, J. J.Primary infantile hypomagnesaemia: report of two cases. J. Paediatr. Child Health. 1995;31:54–56.CrossRefGoogle ScholarPubMed
Paunier, L., Radde, I. C., Kooh, S. W., Conen, P. E., Fraser, D.Primary hypomagnesemia with secondary hypocalcemia in an infant. Pediatrics 1968;41:385–402.Google ScholarPubMed
Skyberg, D., Stromme, J. H., Nesbakken, R.et al.Congenital primary hypomagnesemia, an inborn error of metabolism. Acta Paediatr. Scand. 1967;56:26–7.CrossRefGoogle Scholar
Stromme, J. H., Steen-Johnsen, J., Harnaes, K.et al.Familial hypomagnesemia – a follow up examination of three patients after 9 to 12 years of treatment. Pediatr. Res. 1981;15:1134–9.CrossRefGoogle Scholar
Shalev, H., Phillip, M., Galil, A., Carmi, R., Landau, D.Clinical presentation and outcome in primary familial hypomagnesaemia. Arch. Dis. Child. 1998;78:127–30.CrossRefGoogle ScholarPubMed
Runeberg, L., Collan, Y., Jokinen, E.et al.Hypomagnesemia due to renal disease of unknown etiology. Am. J. Med. 1975;59:873–81.CrossRefGoogle ScholarPubMed
Booth, B., Johanson, A.Hypomagnesemia due to renal tubular defect in reabsorption of magnesium. J. Pediatr. 1974;85:350–4.CrossRefGoogle ScholarPubMed
Gitelman, H., Graham, J., Welt, L.A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Physicians. 1966;79:221–35.Google ScholarPubMed
Michelis, M., Drash, A., Linarelli, L.et al.Decreased bicarbonate threshold and renal magnesium wasting in a sibship with distal renal tubular acidosis. Metabolism 1972;21:905–20.CrossRefGoogle Scholar
Knoers, N. V., Jong, J. C., Meij, I. C.et al.Genetic renal disorders with hypomagnesemia and hypocalciuria. J. Nephrol. 2003;16:293–6.Google ScholarPubMed
Bettinelli, A., Metta, M., Perini, A., Basilico, E., Santeramo, C.Long-term follow-up of a patient with Gitelman's syndrome. Pediatr. Nephrol. 1993;7:67–8.CrossRefGoogle ScholarPubMed
Cole, D. E., Quamme, G. A.Inherited disorders of renal magnesium handling. J. Am. Soc. Nephrol. 2000;11:1937–47.Google ScholarPubMed
Allen, D., Friedman, A., Greer, F., Chesney, R. W.Hypomagnesemia masking the appearance of elevated parathyroid hormone concentrations in familial pseudohypoparathyroidism. Am. J. Med. Genet. 1988;31:153–8.CrossRefGoogle ScholarPubMed
Benigno, V., Canonica, C. S., Bettinelli, A.et al.Hypomagnesaemia–hypercalciuria–nephrocalcinosis: a report of nine cases and a review. Nephrol. Dial. Transplant. 2000;15:605–10.CrossRefGoogle ScholarPubMed
Mand, Konrad S., Weber, S.Recent advances in molecular genetics of hereditary magnesium-losing disorders. J. Am. Soc. Nephrol. 2003;14:249–60.Google Scholar
Konrad, M., Schlingmann, K. P., Gudermann, T.Insights into the molecular nature of magnesium homeostasis. Am. J. Physiol. Renal. Physiol. 2004;286:F599–605.CrossRefGoogle ScholarPubMed
Rude, R., Singer, F.Magnesium deficiency and excess. Annu. Rev. Med. 1981;32:245–59.CrossRefGoogle ScholarPubMed
Dominguez, J., Gray, R., Lemann, J.Dietary phosphate deprivation in women and men: effects of mineral and acid balances, parathyroid hormone and the metabolism of 25-OH-Vitamin D. J. Clin. Endocrinol. Metab. 1976;43:1056–68.CrossRefGoogle Scholar
Bar, R., Wilson, H., Mazzaferri, E.Hypomagnesemic hypocalcemia secondary to renal magnesium wasting. A possible consequence of high dose gentamicin therapy. Ann. Int. Med. 1975;82:646–9.CrossRefGoogle Scholar
Barton, C., Pahl, M., Vaziri, N.et al.Renal magnesium wasting associated with Amphotericin B therapy. Am. J. Med. 1984;77:471–4.CrossRefGoogle ScholarPubMed
Dyckner, T., Wester, P.Intracellular magnesium loss after diuretic administration. Drugs 1984;28:161–6.CrossRefGoogle ScholarPubMed
Sheehan, J., White, A.Diuretic-associated hypomagnesemia. Br. Med. J. 1982;285:1157–9.CrossRefGoogle Scholar
Ryan, M.Diuretics and potassium/magnesium depletion: directions for treatment. Am. J. Med. 1987;82:38–47.CrossRefGoogle Scholar
Leary, W., Reyes, A.Diuretic-induced magnesium losses. Drugs 1984;28:182–7.CrossRefGoogle ScholarPubMed
Seelig, M. Prenatal and neonatal mineral deficiencies: magnesium, zinc, and chromium. In Lifshitz, F., ed. Pediatric Nutrition. Infant feedings – Deficiencies – Diseases. Clinical Disorders in Pediatric Nutrition, Vol. 2. New York: Marcel Dekker Inc.;1982:167–96.Google Scholar
Jukarainen, E.Plasma magnesium levels during the first five days of life. Acta Paediatr. Scand. 1974;222:1–58.Google Scholar
Ertel, N., Reiss, J., Spergel, G.Hypomagnesemia in neonatal tetany associated with maternal hyperparathyroidism. N. Engl. J. Med. 1969;50:264–7.Google Scholar
Dooling, E., Stern, L.Hypomagnesemia with convulsions in a newborn infant. Canad. Med. Assoc. J. 1967;97:827–31.Google Scholar
MacIntyre, I., Boss, S., Troughton, V.Parathyroid hormone and magnesium homeostasis. Nature 1963;198:1058–60.CrossRefGoogle Scholar
Jones, K., Fourman, P.Effects of infusions of magnesium and of calcium in parathyroid insufficiency. Clin. Sci. 1966;30:139–50.Google ScholarPubMed
Kobayashi, A., Shiraki, K.Serum magnesium level in infants and children with hepatic diseases. Arch. Dis. Child. 1967;42:615–18.CrossRefGoogle ScholarPubMed
Cohen, M., McNamara, H., Finberg, L.Serum magnesium with cirrhosis. J. Pediatr. 1970;76:453–5.CrossRefGoogle ScholarPubMed
Cowan, G., Luther, R., Sykes, T.Short bowel syndrome: causes and clinical consequences. Nutr. Supp. Services. 1984;4:25–32.Google Scholar
Weser, E.Nutritional aspects of malabsorption: short gut adaptation. Am. J. Med. 1979;67:1014–20.CrossRefGoogle ScholarPubMed
Ziegler, M.Short bowel syndrome in infancy: etiology and management. Clin. Perinatol. 1986;13:163–73.CrossRefGoogle ScholarPubMed
Rodder, S., Mize, C., Forman, L., Uauy, R.Effects of increased dietary phosphorus on magnesium balance in very low birthweight babies. Magnesium Res. 1993;5:273–5.Google Scholar
Ryan, M. P.Interrelationships of magnesium and potassium homeostasis. Mineral Electrolyte Metab. 1993;19:290–5.Google ScholarPubMed
Brand, J., Greer, F.Hypermagnesemia and intestinal perforation following antacid administration in a premature infant. Pediatrics 1990;85:121–4.Google Scholar
Brady, J. P., Williams, H. C.Magnesium intoxication in a premature infant. Pediatrics 1967;40:100–3.Google Scholar
Engel, R. R., Elin, R. J.Hypermagnesemia from birth asphyxia. J. Pediatr. 1970;77:631–7.CrossRefGoogle ScholarPubMed
Ali, A., Walentik, C., Mantych, G. J.et al.Iatrogenic acute hypermagnesemia after total parenteral nutrition infusion mimicking septic shock syndrome: two case reports. Pediatrics 2003;112:E70–2.CrossRefGoogle ScholarPubMed
Mofenson, H. C., Caraccio, T. R.Magnesium intoxication in a neonate from oral magnesium hydroxide laxative. Clin. Toxicol. 1991;29:215–22.Google Scholar
Ichiba, H., Tamai, H., Negishi, H.et al.Randomized controlled trial of magnesium sulfate infusion for severe birth asphyxia. Pediatr. Int. 2002;44:505–9.CrossRefGoogle ScholarPubMed
Cooper, L.Wertheimer, J., Levey, R.et al.Severe primary hyperparathyroidism in a neonate with two hypercalcemic parents: management with parathyroidectomy and heterotopic autotransplantation. Pediatrics 1986;78:263–8.Google Scholar
Donovan, E., Tsang, R., Steichen, J.et al.Neonatal hypermagnesemia: effect on parathyroid hormone and calcium homeostasis. J. Pediatr. 1980;96:305–10.CrossRefGoogle ScholarPubMed
Buckle, R., Care, A., Cooper, C.The influence of plasma magnesium concentration on parathyroid hormone secretion. J. Endocrinol. 1968;42:529–34.CrossRefGoogle ScholarPubMed
Massry, S. G., Coburn, J. W., Kleeman, C. R.Evidence for suppression of parathyroid gland activity by hypermagnesemia. J. Clin. Invest. 1970;49:1619–29.CrossRefGoogle ScholarPubMed
Lipsitz, P. J.The clinical and biochemical effects of excess magnesium in the newborn. Pediatrics 1971;47:501–9.Google ScholarPubMed
MacManus, J., Heaton, F. W.The influence of magnesium on calcium release from bone in vitro. Biochem. Biophys. Acta. 1970;215:360–7.CrossRefGoogle ScholarPubMed
Sokal, M., Koenigsberger, M., Rose, J.et al.Neonatal hypermagnesemia and the meconium-plug syndrome. N. Engl. J. Med. 1972;286:823–5.CrossRefGoogle ScholarPubMed
Lamm, C., Norton, K., Murphy, R.et al.Congenital rickets associated with magnesium sulfate infusion for tocolysis. J. Pediatr. 1988;113:1078–82.CrossRefGoogle ScholarPubMed
Holcomb, W. J., Shackelford, G., Petrie, R.Magnesium tocolysis and neonatal bone abnormalities: a controlled study. Obstet. Gynecol. 1991;78:611–14.Google ScholarPubMed
Cumming, W., Thomas, V.Hypermagnesemia: a cause of abnormal metaphyses in the neonate. Am. J. Radiol. 1989;152:1071–2.Google ScholarPubMed
Levine, B. S., Coburn, J. W.Magnesium, the mimic/antagonist of calcium. N. Engl. J. Med. 1984;310:1253–5.CrossRefGoogle Scholar
Dent, C., Gupta, M.Plasma 25-hydroxyvitamin D levels during pregnancy in Caucasians and in vegetarian and non-vegetarian Asians. Lancet 1975;2:1057–60.CrossRefGoogle ScholarPubMed
Heckmatt, J., Peacock, M., Davies, A.et al.Plasma 25-hydroxyvitamin D in pregnant Asian women and their babies. Lancet 1979;2:546–8.CrossRefGoogle ScholarPubMed
Biale, Y., Shany, S., Levi, M.et al.25-Hydroxycholecalciferol levels in Bedouin women in labor and in cord blood of their infants. Am. J. Clin. Nutr. 1979;32:2380–2.CrossRefGoogle Scholar
Bassir, M., Laborie, S., Lapillonne, A.et al.Vitamin D deficiency in Iranian mothers and their neonates: a pilot study. Acta Paediatr. 2001;90:577–9.CrossRefGoogle ScholarPubMed
Jacobus, C., Holick, M., Shao, Q.et al.Hypervitaminosis D associated with drinking milk. N. Engl. J. Med. 1992;326:1173–7.CrossRefGoogle ScholarPubMed
Holick, M., Shao, Q., Liu, W., Chen, T.The vitamin D content of fortified milk and infant formula. N. Engl. J. Med. 1992;326:1178–81.CrossRefGoogle ScholarPubMed
Zimmerman, T., Giddens, W., DiGiacomo, R., Ladiges, W.Soft tissue mineralization in rabbits fed a diet containing excess vitamin D. Lab. Anim. Sci. 1990;40:212–15.Google ScholarPubMed
Friedman, W., Mills, L.The relationship between vitamin D and the craniofacial and dental anomalies of the supravalvular aortic stenosis syndrome. Pediatrics 1969;43:12–18.Google ScholarPubMed
Itani, O., Tsang, R. C. Bone disease. In Kaplan, L. A., Pesce, A. J., eds. Clinical Chemistry: Theory, Analysis and Correlation. 4th edn. St. Louis: Mosby-Year Book;2003:507–34.Google Scholar
Bainbridge, R., Itani, O., Tsang, R. Rickets. In Carraza, F., Marcondes, E., eds. Textbook of Clinical Nutrition in Pediatrics. 1991:252–64.Google Scholar
David, L. Common vitamin D-deficiency rickets. In Glorieux, F., ed. Rickets, Vol. 21. New York, NY: Vevey/Raven Press;1991:107–22.Google Scholar
Chesney, R.Requirements and upper limits of vitamin D intake in the term neonate, infant, and older child. J. Pediatr. 1990;116:159–66.CrossRefGoogle ScholarPubMed
Specker, B. L., Valanis, B., Hertzberg, V., Edwards, N., Tsang, R. C.Sunshine exposure and serum 25-hydroxyvitamin D concentrations in exclusively breast-fed infants. J. Pediatr. 1985;107:372–6.CrossRefGoogle ScholarPubMed
Paunier, L. Prevention of rickets. In Glorieux, F., ed. Rickets, Vol. 21. New York, NY: Vevey/Raven Press;1991:263–72.Google Scholar
Malloy, P., Hochberg, Z., Tiosano, D.et al.The molecular basis of hereditary 1,25-dihydroxyvitamin D3 resistant rickets in seven related families. J. Clin. Invest. 1990;86:2071–80.CrossRefGoogle ScholarPubMed
Malloy, P., Hochberg, Z., Wesley, R., Pike, J., Feldman, D.Abnormal binding of vitamin D receptors to deoxyribonucleic acid in a kindred with vitamin D- dependent rickets, type II. J. Clin. Endocrinol. Metab. 1989;68:263–9.CrossRefGoogle Scholar
Holm, A., Goldsmith, L.Impetigo herpetiformis associated with hypocalcemia of congenital rickets. Arch. Dermatol. 1991;127:91–5.CrossRefGoogle ScholarPubMed
Weisman, Y., Jaccard, N., Legum, C.et al.Prenatal diagnosis of vitamin D-dependent rickets, type II: response to 1,25-dihydroxyvitamin D in amniotic fluid cells and fetal tissues. J. Clin. Endocrinol. Metab. 1990;71:937–43.CrossRefGoogle ScholarPubMed
Clements, M., Johnson, L., Fraser, D.A new mechanism for induced vitamin D deficiency in calcium deprivation. Nature 1987;325:62–5.CrossRefGoogle ScholarPubMed
Senterre, J. Osteopenia versus rickets in premature infants. In , Glorieux F., ed. Rickets, Vol. 21, New York: Vevey/Raven Press; 1991:145–54.
Legius, E., Proesmans, W., Eggermont, E.et al.Rickets due to dietary calcium deficiency. Eur. J. Pediatr. 1989;148:784–5.CrossRefGoogle ScholarPubMed
Okonofua, F., Gill, D., Alabi, Z.et al.Rickets in Nigerian children: a consequence of calcium malnutrition. Metabolism 1991;40:209–13.CrossRefGoogle ScholarPubMed
Pettifor, J. Dietary calcium deficiency. In Glorieux, F., ed. Rickets, Vol. 21. New York: Vevey/Raven Press;1991:123–43.Google Scholar
Balsan, S., Tieder, M.Linear growth in patients with hypophosphatemic vitamin D-resistant rickets: influence of treatment regimen and parental height. J. Pediatr. 1990;116:365–70.CrossRefGoogle ScholarPubMed
Rivkees, S., El-Hajj-Fuleihan, G., Brown, E., Crawford, J.Tertiary hyperparathyroidism during high phosphate therapy of familial hypophosphatemic rickets. J. Clin. Endocrinol. Metab. 1992;75:1514–18.Google ScholarPubMed
Glorieux, F.Calcitriol treatment in vitamin D-dependent and vitamin D-resistant rickets. Metabolism 1990;39:10–12.CrossRefGoogle ScholarPubMed
Hanna, J., Niimi, K., Chan, J.X-linked hypophosphatemia – Genetic and clinical correlates. Am. J. Dis. Child. 1991;145:865–70.CrossRefGoogle ScholarPubMed
Verge, C., Lam, A., Simpson, J.et al.Effects of therapy in X-linked hypophosphatemic rickets. N. Engl. J. Med. 1991;325:1843–8.CrossRefGoogle ScholarPubMed
Hurley, D., McMahon, M.Long-term parenteral nutrition and metabolic bone disease. Endocrinol. Metab. Clin. N. Am. 1990;19:113–31.Google ScholarPubMed
Wood, R., Bengoa, J., Sitrin, M., Rosenberg, I.Calciuretic effect of cyclic versus continuous total parenteral nutrition. Am. J. Clin. Nutr. 1985;41:614–19.CrossRefGoogle ScholarPubMed
Pelegano, J., Rowe, J., Carey, D., et al.Effect of calcium/phosphorus ratio on mineral retention in parenterally fed premature infants. J. Pediatr. Gastroenterol. Nutr. 1991;12:351–5.CrossRefGoogle ScholarPubMed
Block, G., Wood, R., Allen, L.A comparison of the effects of feeding sulfur amino acids and protein on urine calcium in man. Am. J. Clin. Nutr. 1980;33:2128–36.CrossRefGoogle ScholarPubMed
Cole, D., Zlotkin, S.Increased sulfate as an etiological factor in the hypercalciuria associated with total parenteral nutrition. Am. J. Clin. Nutr. 1983;37:108–13.CrossRefGoogle ScholarPubMed
Bengoa, J., Sitrin, M., Wood, R.Amino acid-induced hypercalciuria in patients on total parenteral nutrition. Am. J. Clin. Nutr. 1983;38:264–9.CrossRefGoogle ScholarPubMed
Kaneko, K., Masaki, U., Aikyo, M.et al.Urinary calcium and calcium balance in young women affected by high protein diet of soy protein isolate and adding sulfur-containing amino acids and/or potassium. J. Nutr. Sci. Vitaminol. 1990;36:105–16.CrossRefGoogle ScholarPubMed
Linkswiler, H., Zemel, M., Hegsted, M., Shuette, S.Protein-induced hypercalciuria. Fed. Proc. 1981;40:2429–33.Google ScholarPubMed
Rauch, F., Schoenau, E.Changes in bone density during childhood and adolescence: an approach based on bone's biological organization. J. Bone Mineral Res. 2001;16:597–604.CrossRefGoogle ScholarPubMed
Rigo, J., Curtis, M., Pieltain, C.et al.Bone mineral metabolism in the micropremie. Clin. Perinatol. 2000;27:147–70.CrossRefGoogle ScholarPubMed
Backstrom, M. C., Kuusela, A. L., Maki, R.Metabolic bone disease of prematurity. Ann. Med. 1996;28:275–82.CrossRefGoogle ScholarPubMed
Greer, F. R.Osteopenia of prematurity. Annu. Rev. Nutr. 1994;14:169–85.CrossRefGoogle ScholarPubMed
Bishop, N.Bone disease in preterm infants. Arch. Dis. Child. 1989;64:1403–9.CrossRefGoogle ScholarPubMed
Rodriguez, J. I., Garcia-Alix, A., Palacios, J.et al.Changes in the long bones due to fetal immobility caused by neuromuscular disease. A radiographic and histological study. J. Bone Joint Surg [Am]. 1988;70:1052–60.CrossRefGoogle Scholar
Rodriguez, J. I., Palacios, J., Garcia-Alix, A.et al.Effects of immobilization on fetal bone development. A morphometric study in newborns with congenital neuromuscular diseases with intrauterine onset. Calcif. Tissue Int. 1988;43:335–9.CrossRefGoogle ScholarPubMed
Rodriguez, J. I., Palacios, J., Ruiz, A.et al.Morphological changes in long bone development in fetal adinesia deformation sequence: an experimental study in curarized rat fetuses. Teratology 1992;45:213–21.CrossRefGoogle ScholarPubMed
Callenbach, J. C., Sheehan, M. B., Abramson, S. J., Hall, R. T.Etiologic factors in rickets of very low-birth-weight infants. J. Pediatr. 1981;98:800–5.CrossRefGoogle ScholarPubMed
Masel, J. P., Tudehope, D., Cartwright, D., Cleghorn, G.Osteopenia and rickets in the extremely low birth weight infant – a survey of the incidence and a radiological classification. Australas. Radiol. 1982;26:83–96.CrossRefGoogle Scholar
Lyon, A. J., McIntosh, N., Wheeler, K., Williams, J. E.Radiological rickets in extremely low birthweight infants. Pediatr. Radiol. 1987;17:56–8.CrossRefGoogle ScholarPubMed
Koo, W. W., Sherman, R., Succop, P.et al.Fractures and rickets in very low birth weight infants: conservative management and outcome. J. Pediatr. Orthop. 1989;9:326–30.CrossRefGoogle ScholarPubMed
Koo, W. W., Sherman, R., Succop, P., Ho, M., Buckley, D., Tsang, R. C.Serum vitamin D metabolites in very low birth weight infants with and without rickets and fractures. J. Pediatr. 1989;114:1017–22.CrossRefGoogle ScholarPubMed
Msomekela, M.Manji, K., Mbise, R. L., Kazema, R., Makwaya, C.A high prevalence of metabolic bone disease in exclusively breastfed very low birthweight infants in Dar-es-Salaam, Tanzania. Ann. Trop. Paediatr. 1999;19:337–44.CrossRefGoogle ScholarPubMed
Steichen, J. J., Tsang, R. C.Bone mineralization and growth in term infants fed soy-based or cow milk-based formula. J. Pediatr. 1987;110:687–92.CrossRefGoogle ScholarPubMed
Campfield, T., Braden, G., Flynn-Valone, P., Powell, S.Effect of diuretics on urinary oxalate, calcium, and sodium excretion in very low birth weight infants. Pediatrics 1997;99:814–18.CrossRefGoogle ScholarPubMed
Ziegler, E. E., O'Donnell, A. M., Nelson, S. E., Fomon, S. J.Body composition of the reference fetus. Growth 1976;40:329–41.Google ScholarPubMed
Lemons, J. A., Moye, L., Hall, D., Simmons, M.Differences in the composition of preterm and term human milk during early lactation. Pediatr. Res. 1982;16:113–17.CrossRefGoogle ScholarPubMed
Butte, N. F., Garza, C., Johnson, C. A., Smith, E. O., Nichols, B. L.Longitudinal changes in milk composition of mothers delivering preterm and term infants. Early Hum. Dev. 1984;9:153–62.CrossRefGoogle ScholarPubMed
Beyers, N., Alheit, B., Taljaard, J. F.et al.High turnover osteopenea in preterm infants. Bone 1994;15:5–13.CrossRefGoogle Scholar
Mora, S., Weber, G., Bellini, A., Bianchi, C., Chiumello, G.Bone modeling alteration in preterm infants. Arch. Ped. Adolesc. Med. 1994;148:1215–17.Google Scholar
Miller, M. E.The bone disease of preterm birth: a biomechanical perspective. Pediatr. Res. 2003;53:10–15.CrossRefGoogle ScholarPubMed
James, J. R., Congdon, P. J., Truscott, J., Horsman, A., Arthur, R.Osteopenia of prematurity. Arch. Dis. Child. 1986;61:871–6.CrossRefGoogle ScholarPubMed
Horsman, A., Ryan, S. W., Congdon, P. J., Truscott, J. G., James, J. R.Osteopenia in extremely low birth weight infants. Arch. Dis. Child. 1989;64:485–8.CrossRefGoogle Scholar
Horsman, A., Ryan, S. W., Congdon, P. J.et al.Bone mineral content and body size 56 to 100 weeks postconception in preterm and full term infants. Arch. Dis. Child. 1989;64:1579–86.CrossRefGoogle Scholar
Congdon, P. J., Horsman, A., Ryan, S. W., Truscott, J. G., Durward, H.Spontaneous resolution of bone mineral depletion in preterm infants. Arch. Dis. Child. 1990;65:1038–42.CrossRefGoogle ScholarPubMed
Pohlandt, F.Bone mineral deficiency as the main factor of dolichocephalic head flattening in very-low-birth-weight infants. Pediatr. Res. 1994;35:701–3.CrossRefGoogle ScholarPubMed
Seow, W. K., Brown, J. P., Tudehope, D. A., Callaghan, O' M.Dental defects in the deciduous dentition of premature infants with low birth weight and neonatal rickets. Pediatr. Dent. 1984;6:88–92.Google ScholarPubMed
Toomey, F., Hoag, R., Batton, D., Vain, N.Rickets associated with cholestasis and parenteral nutrition in premature infants. Radiology 1982;142:85–8.CrossRefGoogle ScholarPubMed
Koo, W. W., Kaplan, L. A., Horn, J., Tsang, R. C., Steichen, J. J.Aluminum in parenteral nutrition solution – sources and possible alternatives. J. Parenter. Enter. Nutr. 1986;10:591–5.CrossRefGoogle ScholarPubMed
Koo, W. W., Kaplan, L. A.Aluminum and bone disorders: with specific reference to aluminum contamination of infant nutrients. J. Am. Coll. Nutr. 1988;7:199–214.CrossRefGoogle ScholarPubMed
Koo, W. W. K.Parenteral nutrition-related bone disease. J. Parenter. Enter. Nutr. 1992;16:386–94.CrossRefGoogle ScholarPubMed
Zuckerman, M., Pettifor, J. M.Rickets in very-low-birth-weight infants born at Baragwanath Hospital. S. Afr. Med. J. 1994;84:216–20.Google ScholarPubMed
Koo, W. W. K., Bush, A. J., Walters, J., Carlson, S. E.Postnatal development of mineral status during infancy. J. Am. Coll. Nutr. 1998;17:65–70.CrossRefGoogle ScholarPubMed
Dabezies, E. J., Warren, P. D.Fractures in very low birth weight infants with rickets. Clin. Orthop. 1997;335:233–9.Google Scholar
Koo, W. W. K., Gupta, J. M., Nayanar, V. V.et al.Skeletal changes in preterm infants. Arch. Dis. Child. 1982;57:447–52.CrossRefGoogle ScholarPubMed
Glasgow, J. F., Thomas, P. S.Rachitic respiratory distress in small preterm infants. Arch. Dis. Child. 1977;52:268–73.CrossRefGoogle ScholarPubMed
Kovar, I., Mayne, P., Barltrop, D.Plasma alkaline phosphatase activity: a screening test for rickets in preterm neonates. Lancet 1982;i:308–10.CrossRefGoogle Scholar
Abrams, S. A., Schanler, R. J., Garza, C.Relation of bone mineralization measures to serum biochemical measures. Am. J. Dis. Child. 1988;142:1276–8.Google ScholarPubMed
Ryan, S. W., Truscott, J., Simpson, M.et al.Phosphate, alkaline phosphatase and bone mineralisation in preterm neonates. Acta Paediatr. 1993;82:518–21.CrossRefGoogle Scholar
Bishop, N. J., King, F. J., Lucas, A.Increased bone mineral content of preterm infants fed with a nutrient enriched formula after discharge from hospital. Arch. Dis. Child. 1993;68:573–8.CrossRefGoogle ScholarPubMed
Lucas, A., Brooke, O. G., Baker, B. A., Bishop, N., Morley, R.High alkaline phosphatase activity and growth in preterm neonates. Arch. Dis. Child. 1989;64:902–9.CrossRefGoogle ScholarPubMed
Faerk, J., Peitersen, B., Petersen, S., Michaelsen, K. F.Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch. Dis. Child Fetal Neonat. Edn. 2002;87:F133–6.CrossRefGoogle ScholarPubMed
Faerk, J., Petersen, S., Petersen, B.et al.Phosphorus intake is of major importance for growth velocity in premature infants. Pediatr. Res. 1999;45:915.Google Scholar
Gross, S. J.Bone mineralization in preterm infants fed human milk with and without mineral supplementation. J. Pediatr. 1987;111:450–8.CrossRefGoogle ScholarPubMed
Tsukahara, H., Sudo, M., Umezaki, M.et al.Measurement of lumbar spine bone mineral density in preterm infants by dual-energy X-ray absorptiometry. Biol. Neonate 1993;64:96–103.CrossRefGoogle ScholarPubMed
Scariano, J. K., Walter, E. A., Glew, R. H.et al.Serum levels of the pyridinoline crosslinked carboxyterminal telopeptide of type I collagen (C-propeptide of type I collagen) and osteocalcin in rachitic children in Nigeria. Clin. Biochem. 1995;28:541–5.CrossRefGoogle Scholar
Rigo, J., Curtis, M., Pieltain, C.et al.Bone mineral metabolism in the micropremie. Clin. Perinatol. 2000;27:147–70.CrossRefGoogle ScholarPubMed
Atkinson, S. A., Bryan, M. H., Anderson, G. H.Human milk feeding in premature infants: protein, fat and carbohydrate balances in the first two weeks of life. J. Pediatr. 1981;99:617–24.CrossRefGoogle ScholarPubMed
Atkinson, S. A., Radde, I. C., Anderson, G. H.Macromineral balances in premature infants fed their own mothers' milk or formula. J. Pediatr. 1983;102:99–106.CrossRefGoogle ScholarPubMed
Brooke, O. G., Onubogu, O., Heath, R., Carter, N. D.Human milk and preterm formula compared for effects on growth and metabolism. Arch. Dis. Child. 1987;62:917–23.CrossRefGoogle ScholarPubMed
Cooper, P. A., Rothberg, A. D., Pettifor, J. M., Bolton, K. D., Devenhuis, S. Growth and biochemical response of premature infants fed pooled preterm milk or special formula. J. Pediatr. Gastroenterol. Nutr. 1984;3:749–54.CrossRefGoogle ScholarPubMed
Kashyap, S., Schulze, K. F., Forsyth, M.et al.Growth, nutrient retention, and metabolic response of low-birth-weight infants fed supplemented and unsupplemented preterm human milk. Am. J. Clin. Nutr. 1990;52:254–62.CrossRefGoogle ScholarPubMed
Stein, H., Cohen, D., Herman, A. A. B.Pooled pasteurized breast milk and untreated own mother's milk in the feeding of very low birth weight babies: a randomized controlled trial. J. Pediatr. Gastroenterol. Nutr. 1986;5:242–7.CrossRefGoogle ScholarPubMed
Rowe, J. C., Wood, D. H., Rowe, D. W., Raisz, L. G.Nutritional hypophosphatemic rickets in a premature infant fed breast milk. N. Engl. J. Med. 1979;300:293–6.CrossRefGoogle Scholar
Lucas, A., Brooke, O. G., Baker, B. A., Bishop, N., Morley, R.High alkaline phosphatase activity and growth in preterm neonates. Arch. Dis. Child. 1989;64:902–9.CrossRefGoogle ScholarPubMed
Greer, F. R., McCormick, A.Improved bone mineralization and growth in premature infants fed fortified own mother's milk. J. Pediatr. 1988;112:961–9.CrossRefGoogle ScholarPubMed
Faerk, J., Petersen, S., Peitersen, B., Michaelsen, K. F.Diet and bone mineral content at term in premature infants. Pediatr. Res. 2000;47:148–56.CrossRefGoogle ScholarPubMed
Modanlou, H. D., Lim, M. O., Hansen, J. W., Sickles, V.Growth, biochemical status and mineral metabolism in very-low-birth-weight infants receiving fortified preterm human milk. J. Pediatr. Gastroenterol. Nutr. 1986;5:762–7.CrossRefGoogle ScholarPubMed
Venkataraman, P. S., Blick, K. E.Effect of mineral supplementation of human milk on bone mineral content and trace element metabolism. J. Pediatr. 1988;113:220–4.CrossRefGoogle Scholar
Chan, G. M., Mileur, L., Hansen, J. W.Calcium and phosphorus requirements in bone mineralization of preterm infants. J. Pediatr. 1988;113:225–9.CrossRefGoogle ScholarPubMed
Horsmann, A., Ryan, S. W., Congdon, P. J., Truscott, J. G., Simpson, M.Bone mineral accretion rate and calcium intake in preterm infants. Arch. Dis. Child. 1989;64:910–18.CrossRefGoogle Scholar
Holland, P. C., Wilkinson, A. R., Diez, J., Lindsell, D. R.Prenatal deficiency of phosphate, phosphate supplementation and rickets in very-low-birth weight infants. Lancet 1990;335:697–701.CrossRefGoogle Scholar
Lapillonne, A. A., Glorieux, F. H., Salle, B. L.et al.Mineral balance and whole body bone mineral content in very low-birth-weight infants. Acta Paediatr. Suppl. 1994;405:117–22.CrossRefGoogle ScholarPubMed
Steichen, J. J., Cratton, T. L., Tsang, R. C.Osteopenia of prematurity: the cause and possible treatment. J. Pediatr. 1980;96:528–33.CrossRefGoogle ScholarPubMed
Steichen, J. J., Tsang, R. C., Greer, F. R., Ho, M., Hug, G.Elevated serum 1,25 dihydroxyvitamin D concentrations in rickets of very low-birth-weight infants. J. Pediatr. 1981;99:293–8.CrossRefGoogle ScholarPubMed
MacMahon, P., Blair, M. E., Treweeke, P., Kovar, I. Z.Association of mineral composition of neonatal intravenous feeding solutions and metabolic bone disease of prematurity. Arch. Dis. Child. 1989;64:489–93.CrossRefGoogle ScholarPubMed
Wauben, I. P., Atkinson, S. A., Grad, T. L., Shah, J. K., Paes, B.Moderate nutrient supplementation of mother's milk for preterm infants supports adequate bone mass and short-term growth: a randomized, controlled trial. Am. J. Clin. Nutr. 1998;67:465–72.CrossRefGoogle ScholarPubMed
Abrams, S. A., Schanler, R. J., Garza, C.Bone mineralization in former very low birth weight infants fed either human milk or commercial formula. J. Pediatr. 1988;112:956–62.CrossRefGoogle ScholarPubMed
Abrams, S. A., Schanler, R. J., Tsang, R. C., Garza, C.Bone mineralization in former very low birth weight infants fed either human milk or commercial formula: one year follow-up observation. J. Pediatr. 1989;114:1041–4.CrossRefGoogle ScholarPubMed
Schanler, R. J., Garza, C.Improved mineral balance in very low birth weight infants fed fortified human milk. J. Pediatr. 1987;112:452–6.CrossRefGoogle Scholar
Pohlandt, F.Prevention of postnatal bone demineralization in very low-birth-weight infants by individually monitored supplementation with calcium and phosphorus. Pediatr. Res. 1994;35:125–9.CrossRefGoogle ScholarPubMed
Committee on Nutrition of the Preterm Infant, European Society of Paediatric Gastroenterology and Nutrition. Nutrition and Feeding of Premature Infants. Oxford: Blackwell Scientific Publications; 1987:117–32.
American Academy of Pediatrics. Nutritional needs of low-birth weight infants. Pediatrics 1985;75:976–86.
Bronner, F., Salle, B. L., Putet, G., Rigo, J., Senterre, J.Net calcium absorption in premature infants: results of 103 metabolic balance studies. Am. J. Clin. Nutr. 1992;56:1037–44.CrossRefGoogle ScholarPubMed
Lien, E. L., Boyle, F. G., Yuhas, R., Tomarelli, R. M., Quinlan, P.The effect of triglyceride positional distribution on fatty acid absorption in rats. J. Pediatr. Gastroenterol. Nutr. 1997;2:167–74.CrossRefGoogle Scholar
Nelson, S. E., Rogers, R. R., Frantz, J. A., Zieger, E. E.Palm olein in infant formula: absorption of fat and minerals by normal infants. Am. J. Clin. Nutr. 1996;64:291–6.CrossRefGoogle ScholarPubMed
Carnielli, V. P., Luijendijk, I. H. T., Goovener, J. B.et al.Structural position and amount of palmitic acid in infant formulas: effect on fat, fatty acid and mineral balance. J. Pediatr. Gastroenterol. Nutr. 1996;23:255–60.CrossRefGoogle Scholar
Quinlan, P. T., Locker, J., Irwin, J., Lucas, A.The relationship between stool hardness and stool composition in breast- and formula-fed infants. J. Pediatr. Gastroenterol. Nutr. 1995;20:81–90.CrossRefGoogle ScholarPubMed
Koo, W. W. K., Hammami, M., Margeson, D. P.et al.Reduced bone mineralization in infants fed palm olein-containing formula: a randomized, double-blinded, prospective trial. Pediatrics 2003;111:1017–23.CrossRefGoogle ScholarPubMed
Rowe, J. C., Carey, D. E., Goetz, C. A., Adams, N. D., Horak, E.Effect of high calcium and phosphorus intake on mineral retention in very low birth weight infants chronically treated with furosemide. J. Pediatr. Gastroenterol. Nutr. 1989;9:206–11.CrossRefGoogle ScholarPubMed
Crofton, P. M., Stirling, H. F., Schonau, E.et al.Biochemical markers of bone turnover. Horm. Res. 1996;45:55–8.CrossRefGoogle ScholarPubMed
Lemons, P.A daily physical activity programme increased the rate of weight gain and bone mass in preterm very low birth weight infants. Evidence Based Nurs. 2001;4:74.CrossRefGoogle Scholar
Moyer-Mileur, L., Luetkemeler, M., Boomer, L., Chan, G. M.Effect of physical activity on bone mineralization in premature infants. J. Pediatr. 1995;127:620–5.CrossRefGoogle Scholar
Moyer-Mileur, L. J., Brunstetter, V., McNaught, T. P., Gill, G., Chan, G. M.Daily physical activity program increases bone mineralization and growth in preterm very low birth weight infants. Pediatrics 2000;106:1088–92.CrossRefGoogle ScholarPubMed
Litmanovitz, I., Dolfin, T., Friedland, O.et al.Early physical activity intervention prevents decrease of bone strength in very low birth weight infants. Pediatrics 2003;112:15–19.CrossRefGoogle Scholar
Fewtrell, M. S., Prentice, A., Jones, S. C.et al.Bone mineralization and turnover in preterm infants at 8–12 years of age: the effect of early diet. J. Bone Mineral Res. 1999;14:810–20.CrossRefGoogle Scholar
Schanler, R. J., Rifka, M.Calcium, phosphorus and magnesium needs for the low-birth-weight infant. Acta Paediatr. Suppl. 1994;405:111–16.CrossRefGoogle ScholarPubMed
Pereira-da-Silva, L., Nurmamodo, A., Amaral, J. M.et al.Compatibility of calcium and phosphate in four parenteral nutrition solutions for preterm neonates. Am. J. Health Syst. Pharm. 2003;60:1041–4.Google Scholar
Pelegano, J. F., Rowe, J. C., Carey, D. E.et al.Simultaneous infusion of calcium and phosphorus in parenteral nutrition for premature infants: use of physiologic calcium/phosphorus ratio. J. Pediatr. 1989;114:115–19.CrossRefGoogle ScholarPubMed
Hoehn, G. J., Carey, D. E., Rowe, J. C., Horak, E., Raye, J. R.Alternate day infusion of calcium and phosphate in very low birth weight infants: wasting of the infused mineral. J. Pediatr. Gastroenterol. Nutr. 1987;6:752–7.CrossRefGoogle ScholarPubMed
Hoppe, B., Hesse, A., Neuhaus, T.et al.Urinary saturation and nephrocalcinosis in preterm infants: effect of parenteral nutrition. Arch. Dis. Child. 1993;69:299–303.CrossRefGoogle ScholarPubMed
Kimura, S., Nose, O., Seino, Y.et al.Effects of alternate and simultaneous administrations of calcium and phosphorus on calcium metabolism in children receiving total parenteral nutrition. J. Parenter. Enteral Nutr. 1986;10:513–16.CrossRefGoogle Scholar
Hanning, R. M., Atkinson, S. A., Whyte, R. K.Efficacy of calcium glycerophosphate vs conventional mineral salts for total parenteral nutrition in low-birth-weight infants: a randomized clinical trial. Am. J. Clin. Nutr. 1991;54:903–8.CrossRefGoogle ScholarPubMed
Chessex, P., Pineault, M., Brisson, G., Delvin, E. E., Glorieux, F. H.Role of the source of phosphate salt in improving the mineral balance of parenterally fed low birth weight infants. J. Pediatr. 1990;116:765–72.CrossRefGoogle ScholarPubMed
Koo, W. W., Tsang, R. C., Steichen, J. J.et al.Vitamin D requirement in infants receiving parenteral nutrition. J. Parenter. Enteral Nutr. 1987;11:172–6.CrossRefGoogle ScholarPubMed
Koo, W. W., Tsang, R. C., Steichen, J. J.et al.Parenteral nutrition for infants: effect of high versus low calcium and phosphorus content. J. Pediatr. Gastroenterol. Nutr. 1987;6:96–104.CrossRefGoogle ScholarPubMed
Koo, W. W., Tsang, R. C.Mineral requirements of low-birth-weight infants. J. Am. Coll. Nutr. 1991;10:474–86.CrossRefGoogle ScholarPubMed
Prestridge, L. L., Schanler, R. J., Shulman, R. J., Burns, P. A., Laine, L. L.Effect of parenteral calcium and phosphorus therapy on mineral retention and bone mineral content in very low birth weight infants. J. Pediatr. 1993;122:761–8.CrossRefGoogle Scholar
Schanler, R. J., Shulman, R. J., Prestridge, L. L.Parenteral nutrient needs of very low birth weight infants. J. Pediatr. 1994;125:961–8.CrossRefGoogle ScholarPubMed
Koo, W. W. K.Parenteral nutrition-related bone disease. J. Parenter. Enteral Nutr. 1992;16:386–94.CrossRefGoogle ScholarPubMed
Arnold, C. J., Miller, G. G., Zello, G. A.Parenteral nutrition-associated cholestasis in neonates: the role of aluminum. Nutr. Rev. 2003;61:306–10.CrossRefGoogle ScholarPubMed
Popinska, K., Kierkus, J., Lyszkowska, M.et al.Aluminum contamination of parenteral nutrition additives, amino acid solutions, and lipid emulsions. Nutrition 1999;15:683–6.CrossRefGoogle ScholarPubMed
ASCN/ASPEN Working Group on Standards for Aluminum Content of Parenteral Nutrition Solutions. Parenteral drug products containing aluminum as an ingredient or a contaminant: response to Food and Drug Administration notice of intent and request for information. J. Parenter. Enteral Nutr. 1991;15:194–8.CrossRef
Klein, G.Aluminum in parenteral solutions revisited – again. Am. J. Clin. Nutr. 1995;61:449–56.CrossRefGoogle Scholar
Stockhausen, H. B., Schrod, L., Bratter, P., Rosick, U.Aluminium loading in premature infants during intensive care as related to clinical aspects. J. Trace Elem. Electrolytes Health Dis. 1990;4:209–13.Google Scholar
Cole, D. E. C., Zlotkin, S. H.Increased sulfite as an etiological factor in the hypercalciuria associated with total parenteral nutrition. Am. J. Clin. Nutr. 1983;37:108–13.CrossRefGoogle Scholar
Cooke, R. J., Perrin, F., Moore, J., Paule, C., Ruckman, K.Methodology of nutrient balance studies in the preterm infant. J. Pediatr. Gastroenterol. Nutr. 1988;7:434–40.CrossRefGoogle ScholarPubMed
Bronner, F., Salle, B. L., Putet, G., Rigo, J., Senterre, J.Net calcium absorption in premature infants: results of 103 metabolic balance studies. Am. J. Clin. Nutr. 1992;56:1037–44.CrossRefGoogle ScholarPubMed
Salle, B. L., Senterre, J., Putet, G. Calcium, phosphorus, magnesium, and vitamin D requirements in premature infants. In Salle, B. L., Swyer, P. R., eds. Nutrition of the Low Birth Weight Infants. New York, NY: Raven Press;1993:125–35.Google Scholar
Atkinson, S. A., Radde, I. C., Anderson, G. H.Macromineral balances in premature infants fed their own mothers' milk or formula. J. Pediatr. 1983;102:99–106.CrossRefGoogle ScholarPubMed
Schanler, R. J., Abrams, S. A.Postnatal attainment of intrauterine macromineral accretion rates in low birth weight infants fed fortified human milk. J. Pediatr. 1995;126:441–7.CrossRefGoogle ScholarPubMed
Schanler, R. J.Human milk fortification for premature infants. Am. J. Clin. Nutr. 1996;64:249–50.CrossRefGoogle ScholarPubMed
Lucas, A., Fewtrell, M. S., Morley, R.et al.Randomized outcome trial of human milk fortification and developmental outcome in preterm infants. Am. J. Clin. Nutr. 1996;64:142–51.CrossRefGoogle ScholarPubMed
Reis, Barrett B., Hall, R. T., Schanler, R. J.et al.Enhanced growth of preterm infants fed a new powdered human milk fortifier: a randomized, controlled trial. Pediatrics 2000;106:581–8.CrossRefGoogle ScholarPubMed
Specker, B.Nutrition influences bone development from infancy through toddler years. J. Nutr. 2004;134:691S–5S.CrossRefGoogle ScholarPubMed
Pieltain, C., Curtis, M., Gérard, P., Rigo, J.Weight gain composition in preterm infants with dual energy x-ray absorptiometry. Pediatr. Res. 2001;49:120–4.CrossRefGoogle ScholarPubMed
Usher, R., McLean, F.Intrauterine growth of liveborn Caucasian infants at sea level: standard obtained from measurements in 7 dimensions of infants born between 25 and 44 weeks of gestation. J. Pediatr. 1969:74:901–10.CrossRefGoogle Scholar
Gill, A., Yu, V. Y., Bajuk, B., Astbury, J.Postnatal growth in infants born before 30 weeks' gestation. Arch. Dis. Child. 1986;61:549–53.CrossRefGoogle Scholar
Hack, M., Weissman, B., Borawski-Clark, E.Catch-up growth during childhood among very low-birth-weight children. Arch. Pediatr. Adolesc. Med. 1996;150:1122–9.CrossRefGoogle ScholarPubMed
Ross, G., Lipper, E. G., Auld, P. A. M.Growth achievement of very low birth weight premature children at school age. J. Pediatr. 1990;117:307–9.CrossRefGoogle ScholarPubMed
Rigo, J., Boboli, H., Franckart, G., Pieltain, C., Curtis, M.Surveillance de l'ancien prematuré: croissance et nutrition. Arch. Pediatr. 1998;5:449–53.CrossRefGoogle Scholar
Cooke, R. J., McCormick, K., Griffin, I. J.et al.Feeding preterm infants after hospital discharge: effect of diet on body composition. Pediatr. Res. 1999;46:461–4.CrossRefGoogle ScholarPubMed
Hillman, L. S., Salmons, S. S., Erickson, M. M.et al.Calciuria and aminoaciduria in very low birth weight infants fed a high-mineral premature formula with varying levels of protein. J. Pediatr. 1994;125:288–94.CrossRefGoogle ScholarPubMed
Giles, M. M., Laing, I. A., Elton, R. A.et al.Magnesium metabolism in preterm infants: effects of calcium, magnesium, and phosphorus, and of postnatal and gestational age. J. Pediatr. 1990;117:147–54.CrossRefGoogle ScholarPubMed
Lapillone, A. A., Glorieux, F. H., Salle, B.et al.Mineral balance and whole body bone mineral content in very-low-birth-weight infants. Acta Pediatr. Suppl. 1994;405:117–22.CrossRefGoogle Scholar
Koo, W. W., Krug-Wispe, S., Neylan, M.et al.Effect of three levels of vitamin D intake in preterm infants receiving high mineral-containing milk. J. Pediatr. Gastroenterol. Nutr. 1995;21:182–9.CrossRefGoogle ScholarPubMed
Hillman, L. S.Mineral and vitamin D adequacy in infants fed human milk or formula between 6 and 12 months of age. J. Pediatr. 1990;117:S134–42.CrossRefGoogle ScholarPubMed
Steichen, J. J., Koo, W. W.Mineral nutrition and bone mineralization in full-term infants. Monatsschr. Kinderheilkd. 1992;140:S21–7.Google ScholarPubMed
Trotter, A., Maier, L., Pohlandt, F.Calcium and phosphorus balance of extremely preterm infants with estradiol and progesterone replacement. Am. J. Perinatol. 2002;19:23–9.CrossRefGoogle ScholarPubMed
Trotter, A., Maier, L., Pohlandt, F.Management of the extremely preterm infant: is the replacement of estradiol and progesterone beneficial?Paediatr Drugs. 2001;3:629–37.CrossRefGoogle ScholarPubMed
Koo, W. K., Tsang, R. C. Building better bones: calcium, magnesium, phosphorus and vitamin D. In Tsang, R. C., Zlotkin, S. H., Nichols, B. L., Hansen, J. W., eds. Nutrition During Infancy. Cincinnati, OH: Digital Educational Publishing. 1997:175–207.Google Scholar
Koo, W. K., Tsang, R. C. Calcium, magnesium, phosphorus and vitamin D. In Tsang, R., Lucas, A., Uauy, R., Zlotkin, S., eds. Nutritional Needs of the Preterm Infant: Scientific Basis and Practical Guidelines. Baltimore, MD: Williams & Wilkins; 1993:135–55.Google Scholar
Itani, O., Tsang, R. Calcium, phosphorus and magnesium in the newborn: pathophysiology and management. In Hay, W., ed. Neonatal Nutrition and Metabolism. St. Louis: Mosby-Year Book; 1991:171–202.Google Scholar
Koo, W. K., Tsang, R. C. Calcium, magnesium, and phosphorus. In Tsang, R. C., ed. Nutrition in Infancy. Philadelphia: Hanley and Belfus; 1988:419–24.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Disorders of mineral, vitamin D and bone homeostasis
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Disorders of mineral, vitamin D and bone homeostasis
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Disorders of mineral, vitamin D and bone homeostasis
    • By Oussama Itani, Michigan State University and Kalamazoo Center for Medical Studies, and Borgess Medical Center, Kalamazoo, MI, Reginald Tsang, Department of Pediatrics, Children’s Hospital Medical Center, Cincinnati, OH
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.017
Available formats
×