Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-18T18:58:26.384Z Has data issue: false hasContentIssue false

35 - Acute respiratory failure

Published online by Cambridge University Press:  10 December 2009

Patti J. Thureen
Affiliation:
University of Colorado at Denver and Health Sciences Center
John E. E. Van Aerde
Affiliation:
Stollery Children's Hospital, Edmonton, Alberta Canada
Michael Narvey
Affiliation:
Stollery Children's Hospital, Edmonton, Alberta Canada
William W. Hay
Affiliation:
University of Colorado at Denver and Health Sciences Center
Get access

Summary

Feeding a patient with respiratory failure is more complicated in a neonatal than in an adult intensive care setting. For adults the goal is to maintain an acceptable energy balance without imposing extra metabolic and respiratory stress on the organism. In newborn infants, the caloric cost for growth has to be added to the energy balance which means that additional respiratory demands will be imposed on the neonate, because the growth process itself produces carbon dioxide and consumes oxygen.

Nutritional status affects the respiratory system directly by providing energy for the respiratory muscles and development of lung structure and function; indirectly, the level of energy intake (EI) and the dietary macronutrient composition modify the metabolic demands and affect the respiratory system by modifying central ventilatory drive and the respiratory gaseous exchange.

This chapter describes the effect of nutrition on the development and function of the respiratory system in newborns. The first portion describes the interactions between nutrition and structural, biochemical, and functional changes in the lung. The second part addresses metabolic needs of infants with acute respiratory distress and describes the effects of EI and/or diet composition on respiratory gas exchange and energy metabolism in intravenously fed neonates.

Nutrition, metabolism, and the respiratory system

Lung development and morphology

The preterm infant with a birth weight of 1000 g has an expendable nonprotein energy reserve of less than 200 kcal, with 1%–2% of the body weight as fat and less than 1% as glycogen.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Goswami, T., Vu, M., Srivastava, U.Quantitative changes in the DNA, RNA and protein content of various organs of the young of undernourished female rats. J. Nutr. 1974;104:1257–64.CrossRefGoogle Scholar
Winick, M., Noble, A.Cellular response in rats during malnutrition at various ages. J. Nutr. 1966;89:300–6.CrossRefGoogle ScholarPubMed
Sahebjami, H., Vassalo, C.Effects of starvation and refeeding on lung mechanics and morphometry. Am. Rev. Respir. Dis. 1979;119:443–51.Google ScholarPubMed
Sahebjami, H., Wirman, J.Emphysema-like changes in the lungs of starved rats. Am. Rev. Respir. Dis. 1981;124:619–24.Google ScholarPubMed
Harkema, J., Mauderly, J., Gregory, R.et al.A comparison of starvation and elastase models of emphysema in the rat. Am. Rev. Respir. Dis. 1984;129:584–91.Google ScholarPubMed
Stein, J., Fenigstein, H. Anatomie pathologique de la maladie de famine. In Apfelbaum, E., ed. Maladie de Famine. American Joint Distribution Committee; 1946:21–7.Google Scholar
Lechner, A.Perinatal age determines the severity of retarded lung development induced by starvation. Am. Rev. Resp. Dis. 1985;131:638–43.Google ScholarPubMed
Sobonya, R., Logvinoff, M., Faussig, L.et al.Morphometric analysis of the lung in prolonged bronchopulmonary dysplasia. Pediatr. Res. 1983;16:969–72.CrossRefGoogle Scholar
Gross, I., Ilic, I., Wilson, C.et al.The influence of postnatal nutritional deprivation on the phospholipid content of developing rat lung. Biochim. Biophys. Acta 1976;441:412–22.CrossRefGoogle ScholarPubMed
Sahebjami, H., Macgee, J.Changes in connective tissue composition of the lung in starvation and refeeding. Am. Rev. Respir. Dis. 1983;128:644–7.Google ScholarPubMed
Kerr, J., Riley, D., Lanza-Jacoby, S.et al.Nutritional emphysema in the rat. Am. Rev. Respir. Dis. 1985;131:644–50.Google ScholarPubMed
Meyers, B., Dubick, M., Gerreits, J.et al.Protein deficiency: effects on lung mechanics and the accumulation of collagen and elastin in rat lung. J. Nutr. 1983;113:2308–15.CrossRefGoogle Scholar
Frank, L., Sosenko, I.Undernutrition as a major contributing factor in the pathogenesis of bronchopulmonary dysplasia. Am. Rev. Respir. Dis. 1988;138:725–9.CrossRefGoogle ScholarPubMed
Golde, L., Batenburg, J., Robertson, B.The pulmonary surfactant system: biochemical aspects and functional significance. Physiol. Rev. 1988;68:374–455.CrossRefGoogle ScholarPubMed
Fariday, E.Effect of food and water deprivation on surface elasticity of lungs of rats. J. Appl. Physiol. 1970;29:493–8.CrossRefGoogle Scholar
Gail, D., Hassaro, G., Hassaro, D.Influence of fasting on the lung. J. Appl. Physiol. 1977;42:88–92.CrossRefGoogle ScholarPubMed
Rubin, J., Clowes, G., Macnicol, M.Impaired pulmonary surfactant synthesis in starvation and severe nonthoracic sepsis. Am. J. Surg. 1972;123:461–7.CrossRefGoogle ScholarPubMed
Brown, L., Bliss, A., Longshore, W.Effect of nutritional status on the lung surfactant system. Food deprivation and caloric restriction. Exp. Lung Res. 1984;6:133–47.CrossRefGoogle ScholarPubMed
Bruno, J., McMahon, K., Farrell, P.Lung surfactant phospholipids as related to hydration and choline status of fasted rats. J. Nutr. 1985;115:85–9.CrossRefGoogle ScholarPubMed
Frank, L., Sosenko, I.Development of lung antioxidant enzyme system in late gestation: possible implications for the prematurely-born infant. J. Pediatr. 1987;110:9–14.CrossRefGoogle ScholarPubMed
Kyriakides, E., Beeler, D., Edmonds, R.et al.Alterations in phosphatidyl choline species and their reversal in pulmonary surfactant during essential fatty acid deficiency. Biochim. Biophys. Acta 1976;431:399–407.CrossRefGoogle ScholarPubMed
Huang, J., Craig-Schmidt, M. C.Arachidonate and docosahexaenoate added to infant formula influence fatty acid composition and subsequent eicosanoid production in neonatal pigs. J. Nutr. 1996;126:2199–208.CrossRefGoogle ScholarPubMed
Suarez, A., Carmen Ramirez, M., Faus, M. J., Gil, A.Dietary long-chain polyunsaturated fatty acids influence tissue fatty acid composition in rats at weaning. J. Nutr. 1996;126:887–97.CrossRefGoogle ScholarPubMed
Baybutt, R. C., Smith, J. E., Gillespie, M. N., Newcomb, T. G., Yeh, Y. Y.Arachidonic acid and eicosapentaenoic acid stimulate type II pneumocyte surfactant secretion. Lipids 1994;29:535–9.CrossRefGoogle ScholarPubMed
Palombo, J. D., DeMichele, S. J., Lydon, E. E., Gregory, T. J.et al.Rapid modulation of lung and liver macrophage phospholipid fatty acids in endotoxemic rats by continuous enteral feeding with n-3 and gamma-linolenic fatty acids. Am. J. Clin. Nutr. 1996;63:208–19.CrossRefGoogle ScholarPubMed
Yeh, Y. Y., Whitelock, K. A., Yeh, S. M., Lien, E. L.Dietary supplementation with arachidonic and docosahexaenoic acids has no effect on pulmonary surfactant in artificially reared infant rats. Lipids 1999;34:483–8.CrossRefGoogle ScholarPubMed
Wolfe, R. R., Martini, W. Z., Irtun, O., Hawkins, H. K.et al.Dietary fat composition alters pulmonary function in pigs. Nutrition 2002;18:647–53.CrossRefGoogle ScholarPubMed
Farrell, P.Nutrition and infant lung functions. Pediatr. Pulmonol. 1986;2:44–59.CrossRefGoogle Scholar
Hallman, M., Jarvenpaa, A. I., Pohjavuori, M.Respiratory distress syndrome and inositol supplementation in preterm infants. Arch. Dis. Child. 1986;61:1076–83.CrossRefGoogle ScholarPubMed
Hallman, M., Arjornaa, P., Hoppu, K.Inositol supplementation in respiratory distress syndrome. Relationship between serum concentration, renal excretion, and lung effluent phospholipids. J. Pediatr. 1987;110:604–10.CrossRefGoogle ScholarPubMed
Hallman, M., Bry, K., Hoppu, K., Lappi, M.et al.Inositol supplementation in premature infants with respiratory distress syndrome. N. Engl. J. Med. 1992;326:1233–9.CrossRefGoogle ScholarPubMed
Rhoades, R.Influence of starvation on the lung: effect of glucose and palmitate utilization. J. Appl. Physiol. 1975;38:513–16.CrossRefGoogle ScholarPubMed
Goldberg, A., Chane, T.Regulation and significance of amino acid metabolism in skeletal muscle. Fed. Proc. 1978;37:2301–7.Google ScholarPubMed
Fulks, R., Li, J., Goldberg, A.Effects of insulin, glucose and amino acids on protein turnover in rat diaphragm. J. Biol. Chem. 1975;250:290–8.Google ScholarPubMed
Goldberg, A., Odessey, R.Oxidation of amino acids by diaphragm from fed and fasted rats. Am. J. Physiol. 1972;223:1384–91.Google ScholarPubMed
Arora, N., Rochester, D.Respiratory muscle strength and maximal voluntary ventilation in undernourished patients. Am. Rev. Respir. Dis. 1982;126:6–8.Google ScholarPubMed
Arora, N., Rochester, D.Effect of body weight and muscularity on human diaphragm muscle mass, thickness and area. J. Appl. Physiol. 1982;52:64–70.CrossRefGoogle ScholarPubMed
Kelly, S., Rosa, A., Field, S.Inspiratory muscle strength and body composition in patients receiving total parenteral nutrition therapy. Am. Rev. Respir. Dis. 1984;130:33–7.Google ScholarPubMed
Keens, T., Bryan, A., Levison, H.et al.Developmental pattern of muscle fiber types in human ventilatory muscles. J. Appl. Physiol. 1978;44:909–13.CrossRefGoogle ScholarPubMed
Muller, N., Gulston, G., Cade, D.et al.Diaphragmatic muscle fatigue in the newborn. J. Appl. Physiol. 1979;46:688–95.CrossRefGoogle ScholarPubMed
Maxwell, L., Kuehl, Y., Robotham, J.et al.Temporal changes after death in primate diaphragm muscle oxidative enzyme activity. Am. Rev. Respir. Dis. 1984;130:1147–51.Google ScholarPubMed
Maxwell, L., McCarter, R., Kuehl, T.et al.Development of histochemical and functional properties of baboon respiratory muscles. J. Appl. Physiol. 1983;54:551–61.CrossRefGoogle ScholarPubMed
Maycock, D., Hall, J., Watchko, J.et al.Diaphragmatic muscle fiber type development in swine. Pediatr. Res. 1987;22:449–54.CrossRefGoogle Scholar
Fraser, I., Jeejeebhoy, K., Atwood, H.Hypocaloric diet impairs force-length adaptation in the rat soleus. Fed. Proc. 1984;43:533.Google Scholar
Costill, D., Gollnick, P., Jansson, E.et al.Glycogen depletion pattern in human muscle fibers during distance running. Acta Physiol. Scand. 1973;9:374–89.CrossRefGoogle Scholar
Gollnick, P., Pieml, K., Saubert, C.et al.Diet, exercise and glycogen changes in human muscle fibers. J. Appl. Physiol. 1972;33:421–5.CrossRefGoogle ScholarPubMed
Aubier, M., Trippenbach, T., Foussos, C.Respiratory muscle fatigue during cardiogenic shock. J. Appl. Physiol. 1981;51:499–508.CrossRefGoogle ScholarPubMed
Haddad, G., Akabas, S.Adaptation of respiratory muscles to acute and chronic stress. Considerations on energy and fuels. Clin. Chest Med. 1986;7:79–89.Google ScholarPubMed
Swyer, P. Nutrition, growth and metabolism in the newborn. In Prakash, O., ed. Critical Care of the Child. Boston, MA: Martinus Nijhoff; 1984:1–27.CrossRefGoogle Scholar
Swyer, P., Hein, T. Nutrition in the high-risk newborn. In Fanaroff, A., Martin, R., eds. Neonatal-Perinatal Medicine. St. Louis, MO: coefficients of variation Mosby Co; 1987:445–59.Google Scholar
Bryan, M., Wei, P., Hamilton, J.et al.Supplemental intravenous alimentation in low-birthweight infants. J. Pediatr. 1973;82:940–4.CrossRefGoogle Scholar
Chessex, P., Reichman, B., Verellen, G.et al.Relation between heart rate and energy expenditure in the newborn. Pediatr. Res. 1981;15:1077–82.CrossRefGoogle ScholarPubMed
Heymsfield, S., Erbland, M., Casper, K.et al.Enteral nutritional support: metabolic, cardiovascular, and pulmonary interrelations. Clin. Chest Med. 1986;7:41–67.Google ScholarPubMed
Laaban, J., Lemaire, F., Baron, J.et al.Influence of caloric intake on the respiratory mode during mandatory minute volume ventilation. Chest 1985;87:67–78.CrossRefGoogle ScholarPubMed
Tappy, L., Schwarz, J. M., Schneiter, P., Cayeux, C.et al.Effects of isoenergetic glucose-based or lipid-based parenteral nutrition on glucose metabolism de novo lipogenesis, and respiratory gas exchanges in critically ill patients. Crit. Care Med. 1998;26:860–7.CrossRefGoogle ScholarPubMed
Askanazi, J., Elwyn, D., Silverberg, P.et al.Respiratory distress secondary to a high carbohydrate load. Surgery 1980;80:596–8.Google Scholar
Covelli, H., Black, J., Olsen, M.et al.Respiratory failure precipitated by high carbohydrate loads. Ann. Intern. Med. 1981;95:579–81.CrossRefGoogle ScholarPubMed
Zwillich, C., Sahn, S., Weil, J.Effects of hypermetabolism on ventilation and chemosensitivity. J. Clin. Invest. 1977;60:900–6.CrossRefGoogle ScholarPubMed
Chessex, P., Putet, G., Verellen, G.et al.Influence of glucose load on the energy metabolism of preterm infants on fat-free parenteral nutrition. Pediatr. Res. 1984;18:192A.CrossRefGoogle Scholar
Sauer, P., Aerde, J., Pencharz, P.et al.Glucose oxidation rates in newborn infants measured with indirect calorimetry and U-13 C-glucose. Clin. Sci. 1986;70:587–93.CrossRefGoogle Scholar
Aerde, J., Sauer, P., Heim, T.et al.Effect of increasing glucose loads on respiratory gaseous exchange in the newborn infant. Pediatr. Res. 1986;20:420A.Google Scholar
Van Aerde, J., Sauer, P., Pencharz, P. et al. Glucose and fat requirements in the intravenously fed newborn infant. In Stem, L., Friis-Hansen, B., Orzalesi, M., eds. Physiologic Foundations of Perinatal Care, Vol 3. New York, NY: Elsevier Scientific Publishing; 1989:60–74.Google Scholar
Aerde, J.Intravenous nutritional energy support and macronutrient utilization in the neonate. PhD Thesis. Acta Biomedica Lovaniensis 1990;22.Google Scholar
DeMarie, M. P., Hoffenberg, A., Biggerstaff, S. L.et al.Determinants of energy expenditure in ventilated preterm infants. J. Perinat. Med. 1999;27:465–72.CrossRefGoogle ScholarPubMed
Wahlig, T. M., Gatto, C. W., Boros, S. J.et al.Metabolic response of preterm infants to variable degrees of respiratory illness. J. Pediatr. 1994;124:283–8.CrossRefGoogle ScholarPubMed
Meer, D. E. K., Westerterp, X. R., Houwen, R. H. J.et al.Total energy expenditure in infants with bronchopulmonary dysplasia is associated with respiratory status. Eur. J. Pediatr. 1997;56:299–304.CrossRefGoogle Scholar
Georgieff, M., Hoffman, J., Pereira, G.et al.Effect of neonatal caloric deprivation on head growth and 1-year developmental status in preterm infants. J. Pediatr. 1985;107:581–7.CrossRefGoogle ScholarPubMed
Churella, H., Bachuber, B., MacLean, W.Survey: methods of feeding low-birthweight infants. Pediatrics 1985;76:243–9.Google Scholar
Ziegler, E. E., Thureen, P. J., Carlson, S. J.Aggressive nutrition of the very low birthweight infant. Clin. Perinatol. 2002;29:225–44.CrossRefGoogle ScholarPubMed
Forsyth, J. S., Crighton, A.Low birthweight infants and total parenteral nutrition immediately after birth. I. Energy expenditure and respiratory quotient of ventilated and non-ventilated infants. Arch. Dis. Child Fetal Neonatal Edn. 1995;73:F4–7.CrossRefGoogle ScholarPubMed
Garza, J. J., Shew, S. B., Keshen, T. H.et al.Energy expenditure in ill premature neonates. J. Pediatr. Surg. 2002;37:289–93.CrossRefGoogle ScholarPubMed
Van Aerde, J. Acute respiratory failure and bronchopulmonary dysplasia. In Hay, W. W. Jr., ed. Neonatal Nutrition and Metabolism. New York, NY: Mosby Year Book Publishers; 1991:476–506.Google Scholar
Verhoeven, J. J., Hazelzet, J. A., Voort, E., Joosten, K. F.Comparison of measured and predicted energy expenditure in mechanically ventilated children. Intens. Care Med. 1998;24:464–8.CrossRefGoogle ScholarPubMed
Anderson, T., Muttart, C., Bieber, M.et al.A controlled trial of glucose versus glucose and amino acids in preterm infants. J. Pediatr. 1979;94:947–51.CrossRefGoogle Scholar
Joosten, K. F., Verhoeven, J. J., Hazelzet, J. A.Energy expenditure and substrate utilization in mechanically ventilated children. Nutrition. 1999;15:444–8.CrossRefGoogle ScholarPubMed
Thureen, P. J., Anderson, A. H., Baron, K. A.et al.Protein balance in the first week of life in ventilated neonates receiving parenteral nutrition. Am. J. Clin. Nutr. 1998;68:1128–35.CrossRefGoogle ScholarPubMed
Rivera, A. Jr, Bell, E. F., Bier, D. M.Effect of intravenous amino acids on protein metabolism of preterm infants during the first three days of life. Pediatr. Res. 1993;33:106–11.CrossRefGoogle ScholarPubMed
Rubecz, I., Mestyan, J., Varga, P.et al.Energy metabolism, substrate utilization, and nitrogen balance in parenterally fed postoperative neonates and infants. J. Pediatr. 1981;98:4246.CrossRefGoogle ScholarPubMed
Goudoever, J. B., Colen, T., Wattimena, J. L.et al.Immediate commencement of amino acid supplementation in preterm infants: effect on serum amino acid concentrations and protein kinetics on the first day of life. J. Pediatr. 1995;127:458–65.CrossRefGoogle ScholarPubMed
Zlotkin, S., Bryan, M., Anderson, G.Intravenous nitrogen and energy intakes required to duplicate in utero nitrogen accretion in prematurely born human infants. J. Pediatr. 1981;99:115–20.CrossRefGoogle ScholarPubMed
Porcelli, P. J. Jr, Sisk, P. M.Increased parenteral amino acid administration to extremely low-birth-weight infants during early postnatal life. J. Pediatr. Gastro. Nutr. 2002;34:174–9.CrossRefGoogle ScholarPubMed
Weinstein, M., Haugen, K., Bauer, J.et al.Intravenous energy and amino acids in the preterm newborn infant: effects on metabolic rate and potential mechanisms of action. J. Pediatr. 1987;111:119–23.CrossRefGoogle ScholarPubMed
Takala, J., Askanazi, J., Weissman, C.et al.Changes in respiratory control induced by amino acid infusions. Crit. Care Med. 1988;16:465–9.CrossRefGoogle ScholarPubMed
Catzeflis, C., Schutz, Y., Micheli, J.et al.Whole body protein synthesis and energy expenditure. Pediatr. Res. 1985;19:679–87.CrossRefGoogle ScholarPubMed
Sauer, P., Aerde, J., Beesley, J.et al.Energy partition of protein synthesis in resting energy expenditure of neonates on total parental nutrition. Pediatr. Res. 1984;18:339A.CrossRefGoogle Scholar
Kavvadia, V., Greenough, A., Lilley, J.et al.Plasma arginine levels and the response to inhaled nitric oxide in neonates. Biol. Neonate 1999;76:340–7.CrossRefGoogle ScholarPubMed
Vosatka, R. J., Kashyap, S., Trifiletti, R. R.Arginine deficiency accompanies persistent pulmonary hypertension of the newborn. Biol. Neonate 1994;67:240–3.Google Scholar
McCaffrey, M. J., Bose, C. L., Reiter, P. D., Stiles, A. D.Effect of L-arginine infusion on infants with persistent pulmonary hypertension of the newborn. Biol. Neonate 1995;67:240–3.CrossRefGoogle ScholarPubMed
Becker, R. M., Wu, G., Galanko, J. A.et al.Reduced serum amino acid concentrations in infants with necrotizing enterocolitis. J. Peds. 2000;137:785–93.CrossRefGoogle ScholarPubMed
Zamora, S. A., Amin, H. J., McMillan, D. D.et al.Plasma L-arginine concentrations in premature infants with necrotizing enterocolitis. J. Peds. 1997;131:226–32.CrossRefGoogle ScholarPubMed
Amin, H. J., Zamora, S. A., McMillan, D. D.et al.Arginine supplementation prevents necrotizing enterocolitis in the premature infant. J. Peds. 2002;140:425–31.CrossRefGoogle ScholarPubMed
White, C. W., Stabler, S. P., Allen, R. H.et al.Plasma cysteine concentrations in infants with respiratory distress. J. Peds. 1994;125:769–77.CrossRefGoogle ScholarPubMed
Aynsley-Green, A., Soltesz, G. The regulation of carbohydrate metabolism. In Aynsley-Green, A., Soltesz, G., eds. Hypoglycemia in Infancy and Childhood. Edinburgh: Churchill Livingstone; 1985:1–27.Google Scholar
Aerde, J. E., Sauer, P. J., Pencharz, P. B.et al.Metabolic consequences of increasing energy intake by adding lipid to parenteral nutrition in full-term infants. Am. J. Clin. Nutr. 1994;59:659–62.CrossRefGoogle ScholarPubMed
Askanazi, J., Rosenbaum, S., Hyman, A.et al.Respiratory changes induced by the large glucose loads of total parenteral nutrition. J. Am. Med. Assoc. 1980;14:1444–7.CrossRefGoogle Scholar
Nordenstrom, J., Jeevanandarn, M., Elwyn, D.et al.Increasing glucose intake during total parenteral nutrition increases norepinephrine excretion in trauma and sepsis. Clin. Physiol. 1981;1:525–34.CrossRefGoogle ScholarPubMed
Askanazi, J., Rosenbaum, S., Michelsen, C.et al.Increased body temperature secondary to total parenteral nutrition. Crit. Care Med. 1980;8:736–7.CrossRefGoogle ScholarPubMed
Askanazi, J., Carpentier, Y., Elwyn, D.et al.Influence of total parenteral nutrition on fuel utilization in injury and sepsis. Am. Surg. 1979;191:40–6.Google Scholar
Elwyn, D., Kinney, J., Gump, F.et al.Some metabolic effects of fat infusions in depleted patients. Metabolism 1980;29:125–32.CrossRefGoogle ScholarPubMed
Hunker, F., Burton, C., Hunker, E.et al.Metabolic and nutritional evaluation of patients supported with mechanical ventilation. Crit. Care Med. 1980;8:628–32.CrossRefGoogle ScholarPubMed
Rodriguez, J., Weissman, C., Askanazi, J.et al.Metabolic and respiratory effects of glucose infusion. Anesthesiology 1982;57:AI99.CrossRefGoogle Scholar
Gieseke, T., Gurushanthaiah, G., Glauser, F.Effects of carbohydrate on carbon dioxide excretion in patients with airway disease. Chest 1977;71:55–8.CrossRefGoogle ScholarPubMed
Saltzman, H., Salzano, J.Effects of carbohydrate metabolism upon respiratory gas exchange in normal men. J. Appl. Physiol. 1971;30:228–31.CrossRefGoogle ScholarPubMed
Herve, P., Simonneau, G., Girard, P.et al.Enteral nutritional support: metabolic, cardiovascular, and pulmonary interrelations. Clin. Chest Med. 1986;7:41–67.Google Scholar
Frayn, K.Calculation of substrate oxidation rate in vivo from gaseous exchange. J. Appl. Physiol. 1983;55:628–34.CrossRefGoogle ScholarPubMed
Flatt, J. The biochemistry of energy expenditure. In Bray, G., ed. Recent Advances in Obesity Research. Washington, DC: Newman Publishers; 1977:211–28.Google Scholar
Bier, D., Leake, R., Haymond, M.et al.Measurement of “true” glucose production rates in infancy and childhood with 6,6-dideutero-glucose. Diabetes 1977;26:1016–23.CrossRefGoogle Scholar
Kalhan, S., Savin, S., Adam, P.et al.Estimation of glucose turnover with stable tracer glucose-1–13C. J. Lab. Clin. Med. 1977;80:285–94.Google Scholar
Heymsfield, S. B., Head, C. A., McManus, C. B. 3rd.et al.Respiratory, cardiovascular and metabolic effects of enteral hyperalimentation: influence of formula dose and composition. Am. Clin. Nutr. 1984;40:116–30.CrossRefGoogle ScholarPubMed
Nordenstrom, J., Carpentier, Y., Askanazi, J.et al.Metabolic utilization of intravenous fat emulsion during total parenteral nutrition. Ann. Surg. 1982;196:221–31.CrossRefGoogle ScholarPubMed
Thiebaud, D., Acheson, K., Schutz, Y.et al.Stimulation of thermogenesis in man after combined glucose-long-chain-triglyceride infusion. Am. J. Clin. Nutr. 1983;37:603–11.CrossRefGoogle ScholarPubMed
Nose, O., Tipton, J., Ament, M.et al.Effect of the energy source on changes in energy expenditure, respiratory quotient and nitrogen balance during total parenteral nutrition in children. Pediatr. Res. 1987;21:538–41.CrossRefGoogle ScholarPubMed
Heim, T., Putet, G., Verellen, G. et al. Energy cost of intravenous alimentation in the newborn infant. In Stem, L., Salle, B., Friis-Hansen, B., eds. Intensive Care in the Newborn Ill. New York, NY: Masson Publishing; 1981:219–38.Google Scholar
Aerde, J., Sauer, P., Pencharz, P.et al.The effect of replacing glucose with lipid on the energy metabolism of newborn infants. Clin. Sci. 1989;76:581–8.CrossRefGoogle ScholarPubMed
Piedboeuf, B., Chessex, P., Hazan, J.et al.Total parenteral nutrition in the newborn infant: energy substrates and respiratory gas exchange. J. Pediatr. 1991;118:97–102.CrossRefGoogle ScholarPubMed
Chessex, P., Belanger, S., Piedboeuf, B., Pineault, M.Influence of energy substrates on respiratory gas exchange during conventional mechanical ventilation of preterm infants. J. Pediatr. 1995;126:619–24.CrossRefGoogle ScholarPubMed
Greene, H., Hazlett, D., Demaree, R.Relationship between intralipid-induced hyperlipemia and pulmonary function. Am. J. Clin. Nutr. 1976;29:127–35.CrossRefGoogle ScholarPubMed
Hageman, J. R., McCulloch, K., Gora, P.et al.Intralipid alterations in pulmonary prostaglandin metabolism and gas exchange. Crit. Care Med. 1983;11:794–8.CrossRefGoogle ScholarPubMed
Hageman, J., Hunt, C.Fat emulsions and lung function. Clin. Chest Med. 1986;7:69–77.Google ScholarPubMed
Inwood, R., Gora, P., Hunt, C.Indomethacin inhibition of intralipid induced lung dysfunction. Prostaglandins Med. 1981;6:503–14.CrossRefGoogle ScholarPubMed
McKeen, C., Brigham, K., Bowers, R.Pulmonary vascular effects of fat emulsion infusion in unanesthetized sheep. J. Clin. Invest. 1978;61:1291–7.CrossRefGoogle ScholarPubMed
Skeie, B., Askanazi, J., Rothkopf, M.et al.Intravenous fat emulsions and lung emulsions: a review. Crit. Care Med. 1988;16:183–94.CrossRefGoogle ScholarPubMed
Mathru, M., Dries, D. J., Zecca, A.et al.Effect of fast vs. slow intralipid infusion on gas exchange, pulmonary hemodynamics, and prostaglandin metabolism. Chest 1991;126:619–24.Google Scholar
Hunt, C., Pachman, L., Hageman, J.et al.Liposyn infusion increases plasma prostaglandin concentrations. Pediatr. Pulmonol. 1986;2:154–8.CrossRefGoogle ScholarPubMed
Kadowitz, P., Spannhake, E., Levin, J.Differential actions of the prostaglandins on the pulmonary vascular bed. Adv. Prostaglandin Thromboxane Res. 1980;7:731–43.Google ScholarPubMed
Brans, Y., Dutton, E., Andrew, D.et al.Fat emulsion tolerance in very low birth weight neonates. Effect on diffusion of oxygen in the lungs and on blood pH. Pediatrics 1986;78:79–84.Google ScholarPubMed
Coe, J., Aerde, J., Kolatat, T.et al.Intralipid induced pulmonary vasoconstrictions in newborn piglets. Clin. Invest. Med. 1988;11:1334.Google Scholar
Gurtner, G., Knoblauch, A., Smith, P.et al.Oxidant- and lipid-induced pulmonary vasoconstriction mediated by arachidonic acid metabolites. J. Appl. Physiol. 1983;55:949–54.CrossRefGoogle ScholarPubMed
Tague, W., Ray, U., Braun, D.et al.Lung vascular effects of lipid infusion in awake lambs. Pediatr. Res. 1987;22:714–19.CrossRefGoogle Scholar
Lloyd, T., Boucek, M.Effect of intralipid on the neonatal pulmonary bed: an echographic study. J. Pediatr. 1986;108:130–3.CrossRefGoogle Scholar
Prasertsom, W., Phillipos, E. Z., Aerde, J. E., Robertson, M.Pulmonary vascular resistance during lipid infusion in neonates. Arch. Dis. Child. 1996;74:F95–8.CrossRefGoogle ScholarPubMed
Hammerman, C., Aramburo, M.Decreased lipid intake reduces morbidity in sick premature neonates. J. Pediatr. 1988;113:1083–8.CrossRefGoogle ScholarPubMed
Hammerman, C., Valaitis, S., Aramburo, M.Thromboxanes: The link between intralipid and pulmonary vasoconstriction in the newborn. Pediatr. Res. 1987;21:236A.CrossRefGoogle Scholar
Broderick, K., Tyrala, E.Leukotrienes and their role in the development of bronchopulmonary dysplasia in the newborn. Pediatr. Res. 1987;21:445A.Google Scholar
Barrington, K. J., Chan, G., Aerde, J. E.Intravenous lipid composition affects hypoxic pulmonary vasoconstriction in the newborn piglet. Can. J. Physiol. Pharmacol. 2001;79:594–600.CrossRefGoogle ScholarPubMed
Sosenko, I., Innis, S., Frank, L.Polyunsaturated fatty acids and protection of newborn rats from oxygen toxicity. J. Pediatr. 1988;112:630–7.CrossRefGoogle ScholarPubMed
Venus, B., Smith, R. A., Patel, C., Sandoval, E.Hemodynamic and gas exchange alterations during intralipid infusion in patients with adult respiratory distress syndrome. Chest 1989;95:1278–81.CrossRefGoogle ScholarPubMed
Ball, M. J., White, K.Metabolic effects of intravenous medium- and long-chain triacylglycerols in critically ill patients. Clin. Sci. (Lond). 1989;76:165–70.CrossRefGoogle ScholarPubMed
Lindgren, B. F., Ruokonen, E., Magnusson-Borg, K., Takala, J.Nitrogen sparing effect of structured triglycerides containing both medium- and long-chain fatty acids in critically ill patients: a double blind randomized controlled trial. Clin. Nutr. 2001;20:43–8.CrossRefGoogle ScholarPubMed
Planas, M., Masclans, J. R., Iglesia, R.et al.Eicosanoids and fat emulsions in acute respiratory distress syndrome patients. Nutrition 1997;13:202–5.CrossRefGoogle ScholarPubMed
Chassard, D., Guiraud, M., Gauthier, J.et al.Effects of intravenous medium-chain triglycerides on pulmonary gas exchanges in mechanically ventilated patients. Crit. Care Med. 1994;22:248–51.CrossRefGoogle ScholarPubMed
Delafosse, B., Viale, J. P., Pachiaudi, C.et al.Long- and medium-chain triglycerides during parenteral nutrition in critically ill patients. Am. J. Physiol. Endocrinol. Metab. 1997;272:E550–5.CrossRefGoogle ScholarPubMed
Donnell, S. C., Lloyd, D. A., Eaton, S., Pierro, A.The metabolic response to intravenous medium-chain triglycerides in infants after surgery. J. Pediatr. 2002;141:689–94.CrossRefGoogle ScholarPubMed
Brown, E., Stark, A., Sosenko, I.et al.Bronchopulmonary dysplasia. Possible relationship to pulmonary edema. J. Pediatr. 1978;92:982–4.CrossRefGoogle ScholarPubMed
Binder, N., Raschko, P., Benda, G.et al.Insulin infusion with parenteral nutrition in extremely low birth weight infants with hyperglycemia. J. Pediatr. 1989;114:273–80.CrossRefGoogle ScholarPubMed
Ostertag, G., Jovanovic, L., Lewis, B.et al.Insulin pump therapy in the very low birth weight infant. Pediatrics. 1986;78:625–30.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Acute respiratory failure
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.036
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Acute respiratory failure
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.036
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Acute respiratory failure
  • Patti J. Thureen, University of Colorado at Denver and Health Sciences Center
  • Edited by William W. Hay, University of Colorado at Denver and Health Sciences Center
  • Book: Neonatal Nutrition and Metabolism
  • Online publication: 10 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511544712.036
Available formats
×