Skip to main content Accessibility help
×
Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-28T03:37:01.198Z Has data issue: false hasContentIssue false

12 - Imaging of Reporter Genes and Stem Cells

Published online by Cambridge University Press:  07 September 2010

Sanjiv Sam Gambhir
Affiliation:
Stanford University School of Medicine, California
Shahriar S. Yaghoubi
Affiliation:
Stanford University School of Medicine, California
Get access

Summary

BACKGROUND: WHY DO WE NEED TO IMAGE STEM CELLS?

Over the last few years, cell-based regenerative medicine has appeared as a therapeutic option for many different disease states, such as musculoskeletal, endocrine, neurodegenerative, coronary artery disease, autoimmune diseases, and malignancies and has been a focus of significant attention of the scientific community. The main objective of cell-based therapies is to repopulate the damaged tissue with functional cells, with the final goal that these cells will integrate with the remaining functional native cells and contribute to the recuperation of lost function. Use of stem cells has been shown to regenerate different organs and systems, such as endocrine (e.g., pancreas), joints (i.e., cartilage), musculoskeletal (i.e., bone), and cardiovascular system (i.e., myocardium), and has also been used as adjuvant treatment for malignancies. A wide range of cell types have been used, including mesenchymal stem cells, embryonic stem cells, bone marrow-derived hematopoietic stem cells (HSCs), bone marrow-derived endothelial progenitor cells (EPCs), and neural stem cells. A significant body of knowledge has been acquired in regard to the biology of stem cells and the potential benefit of their use in tissue and organ regeneration. However, several questions remain regarding the biology of stem cells in living subjects and how they integrate with native tissue.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gafni, Y., Turgeman, G., Liebergal, M., Pelled, G., Gazit, Z., Gazit, D. (2004). Stem cells as vehicles for orthopedic gene therapy. Gene Ther 11(4): 417–426.CrossRefGoogle ScholarPubMed
Jorgensen, C., Noel, D., Apparailly, F., Sany, J. (2001). Stem cells for repair of cartilage and bone: the next challenge in osteoarthritis and rheumatoid arthritis. Ann Rheum Dis 60(4): 305–309.CrossRefGoogle ScholarPubMed
Lumelsky, N., Blondel, O., Laeng, P., Velasco, I., Ravin, R., McKay, R. (2001). Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292(5520): 1389–1394.CrossRefGoogle ScholarPubMed
Nawrot, I., Wozniewicz, B., Tolloczko, T., Sawicki, A., Gorski, A., Chudzinski, W., Wojtaszek, M., Grzesiuk, W., Sladowski, D., Karwacki, J., Zawitkowska, T., Szmidt, J. (2007). Allotransplantation of cultured parathyroid progenitor cells without immunosuppression: clinical results. Transplantation 83(6): 734–740.CrossRefGoogle ScholarPubMed
Connor, B., Roon-Mom, W. M., Curtis, M. A., Dragunow, M., Faull, R. L. (2001). Stem cells and neurodegenerative diseases. N Z Med J 114(1142): 477–479.Google ScholarPubMed
Orlic, D., Kajstura, J., Chimenti, S., Jakoniuk, I., Anderson, S. M., Li, B., Pickel, J., McKay, R., Nadal-Ginard, B., Bodine, D. M., Leri, A., Anversa, P. (2001). Bone marrow cells regenerate infarcted myocardium. Nature 410(6829): 701–705.CrossRefGoogle ScholarPubMed
Forrester, J. S., Price, M. J., Makkar, R. R. (2003). Stem cell repair of infarcted myocardium: an overview for clinicians. Circulation 108(9): 1139–1145.CrossRefGoogle ScholarPubMed
Kereiakes, D. J.Stem cells: the chameleon fountain of youth. Circulation 107(7): 939–940.CrossRef
Hassink, R. J., Brutel de la Riviere, A., Mummery, C. L., Doevendans, P. A. (2003). Transplantation of cells for cardiac repair. J Am Coll Cardiol 41(5): 711–717.CrossRefGoogle ScholarPubMed
Papadaki, H. A., Marsh, J. C., Eliopoulos, G. D. (2002). Bone marrow stem cells and stromal cells in autoimmune cytopenias. Leuk Lymphoma 43(4): 753–760.CrossRefGoogle ScholarPubMed
Smith-Berdan, S, Gille, D, Weissman, IL, Christensen, JL (2007). Reversal of autoimmune disease in lupus-prone New Zealand black/New Zealand white mice by nonmyeloablative transplantation of purified allogeneic hematopoietic stem cells. Blood 110(4): 1370–8.CrossRefGoogle ScholarPubMed
Bekkum, D. W. (2000). Stem cell transplantation in experimental models of autoimmune disease. J Clin Immunol 20(1): 10–16.CrossRefGoogle ScholarPubMed
Marmont, A. M. (1998). Stem cell transplantation for severe autoimmune diseases: progress and problems. Haematologica 83(8): 733–743.Google ScholarPubMed
Mutis, T., Goulmy, E. (2002). Targeting alloreactive T cells to hematopoietic system specific minor histocompatibility antigens for cellular immunotherapy of hematological malignancies after stem cell transplantation. Ann Hematol 81(Suppl 2): S38–39.Google ScholarPubMed
Nakanishi, M., Hamazaki, T. S., Komazaki, S., Okochi, H., Asashima, M. (2007). Pancreatic tissue formation from murine embryonic stem cells in vitro. Differentiation 75(1): 1–11.CrossRefGoogle ScholarPubMed
Djouad, F., Mrugala, D., Noel, D., Jorgensen, C. (2006). Engineered mesenchymal stem cells for cartilage repair. Regen Med 1(4): 529–537.CrossRefGoogle ScholarPubMed
Kuroda, R., Usas, A., Kubo, S., Corsi, K., Peng, H., Rose, T., Cummins, J., Fu, F. H., Huard, J. (2006). Cartilage repair using bone morphogenetic protein 4 and muscle-derived stem cells. Arthritis Rheum 54(2): 433–442.CrossRefGoogle ScholarPubMed
Grande, D. A., Mason, J., Light, E., Dines, D. (2003). Stem cells as platforms for delivery of genes to enhance cartilage repair. J Bone Joint Surg Am 85-A(Suppl 2): 111–116.CrossRefGoogle Scholar
Bruder, S. P., Fink, D. J., Caplan, A. I. (1994). Mesenchymal stem cells in bone development, bone repair, and skeletal regeneration therapy. J Cell Biochem 56(3): 283–294.CrossRefGoogle ScholarPubMed
Orlic, D., Kajstura, J., Chimenti, S., Bodine, D. M., Leri, A., Anversa, P. (2003). Bone marrow stem cells regenerate infarcted myocardium. Pediatr Transplant 7(Suppl 3): 86–88.CrossRefGoogle ScholarPubMed
Miyahara, Y., Nagaya, N., Kataoka, M., Yanagawa, B., Tanaka, K., Hao, H., Ishino, K., Ishida, H., Shimizu, T., Kangawa, K., Sano, S., Okano, T., Kitamura, S., Mori, H. (2006). Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med 12(4): 459–465.CrossRefGoogle ScholarPubMed
Yoshioka, T., Ageyama, N., Shibata, H., Yasu, T., Misawa, Y., Takeuchi, K., Matsui, K., Yamamoto, K., Terao, K., Shimada, K., Ikeda, U., Ozawa, K., Hanazono, Y. (2005). Repair of infarcted myocardium mediated by transplanted bone marrow-derived CD34+ stem cells in a nonhuman primate model. Stem Cells (Dayton, Ohio) 23(3): 355–364.CrossRefGoogle Scholar
Genre, D., Viens, P., Bertucci, F., Chabannon, C., Gravis, G., Braud, A. C., Camerlo, J., Houvenaeghel, G., Moutardier, V., Goncalvez, A., Protiere, C., Bardou, V. J., Maraninchi, D. (2002). Modulations of dose intensity of doxorubicin and cyclophosphamide in association with G-CSF and peripheral blood stem cells in adjuvant chemotherapy for breast cancer: comparative evaluation of completion and safety of three intensive regimens. Bone Marrow Transplant 29(11): 881–886.CrossRefGoogle ScholarPubMed
Pittenger, M. F., Martin, B. J. (2004). Mesenchymal stem cells and their potential as cardiac therapeutics. Circ Res 95(1): 9–20.CrossRefGoogle ScholarPubMed
Bhatia, R., Hare, J. M. (2005). Mesenchymal stem cells: future source for reparative medicine. Congest Heart Fail 11(2): 87–91.CrossRefGoogle ScholarPubMed
Pittenger, M. F., Mackay, A. M., Beck, S. C., Jaiswal, R. K., Douglas, R., Mosca, J. D., Moorman, M. A., Simonetti, D. W., Craig, S., Marshak, D. R. (1999). Multilineage potential of adult human mesenchymal stem cells. Science 284(5411): 143–147.CrossRefGoogle ScholarPubMed
Lee, J. P., Jeyakumar, M., Gonzalez, R., Takahashi, H., Lee, P. J., Baek, R. C., Clark, D., Rose, H., Fu, G., Clarke, J., McKercher, S., Meerloo, J., Muller, F. J., Park, K. I., Butters, T. D., Dwek, R. A., Schwartz, P., Tong, G., Wenger, D., Lipton, S. A., Seyfried, T. N., Platt, F. M., Snyder, E. Y. (2007). Stem cells act through multiple mechanisms to benefit mice with neurodegenerative metabolic disease. Nat Med 13(4): 439–447.CrossRefGoogle ScholarPubMed
Rafii, S., Lyden, D. (2003). Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6): 702–712.CrossRefGoogle ScholarPubMed
Roy, N. S., Cleren, C., Singh, S. K., Yang, L., Beal, M. F., Goldman, S. A. (2006). Functional engraftment of human ES cell-derived dopaminergic neurons enriched by coculture with telomerase-immortalized midbrain astrocytes. Nat Med 12(11): 1259–1268.CrossRefGoogle ScholarPubMed
Balsam, L. B., Robbins, R. C. (2005). Haematopoietic stem cells and repair of the ischaemic heart. Clin Sci (Lond) 109(6): 483–492.CrossRefGoogle ScholarPubMed
Stamm, C., Westphal, B., Kleine, H. D., Petzsch, M., Kittner, C., Klinge, H., Schumichen, C., Nienaber, C. A., Freund, M., Steinhoff, G. (2003). Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351): 45–46.CrossRefGoogle ScholarPubMed
Sorrentino, S. A., Bahlmann, F. H., Besler, C., Muller, M., Schulz, S., Kirchhoff, N., Doerries, C., Horvath, T., Limbourg, A., Limbourg, F., Fliser, D., Haller, H., Drexler, H., Landmesser, U. (2007). Oxidant stress impairs in vivo reendothelialization capacity of endothelial progenitor cells from patients with type 2 diabetes mellitus: restoration by the peroxisome proliferator-activated receptor-gamma agonist rosiglitazone. Circulation 116(2): 163–173.CrossRefGoogle ScholarPubMed
Ii, M., Nishimura, H., Iwakura, A., Wecker, A., Eaton, E., Asahara, T., Losordo, D. W. (2005). Endothelial progenitor cells are rapidly recruited to myocardium and mediate protective effect of ischemic preconditioning via “imported” nitric oxide synthase activity. Circulation 111(9): 1114–1120.CrossRefGoogle ScholarPubMed
Rookmaaker, M. B., Vergeer, M., van Zonneveld, A. J., Rabelink, T. J., Verhaar, M. C. (2003). Endothelial progenitor cells: mainly derived from the monocyte/macrophage-containing CD34- mononuclear cell population and only in part from the hematopoietic stem cell-containing CD34+ mononuclear cell population. Circulation 108(21): e150; author reply e150.CrossRefGoogle ScholarPubMed
Imitola, J., Raddassi, K., Park, K. I., Mueller, F. J., Nieto, M., Teng, Y. D., Frenkel, D., Li, J., Sidman, R. L., Walsh, C. A., Snyder, E. Y., Khoury, S. J. (2004). Directed migration of neural stem cells to sites of CNS injury by the stromal cell-derived factor 1alpha/CXC chemokine receptor 4 pathway. Proceedings of the National Academy of Sciences of the United States of America 101(52): 18117–18122.CrossRefGoogle ScholarPubMed
Song, H. J., Stevens, C. F., Gage, F. H. (2002). Neural stem cells from adult hippocampus develop essential properties of functional CNS neurons. Nat Neurosci 5(5): 438–445.CrossRefGoogle ScholarPubMed
Massoud, T. F., Gambhir, S. S. (2003). Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17(5): 545–580.CrossRefGoogle Scholar
Herschman, H. R., MacLaren, D. C., Iyer, M., Namavari, M., Bobinski, K., Green, L. A., Wu, L., Berk, A. J., Toyokuni, T., Barrio, J. R., Cherry, S. R., Phelps, M. E., Sandgren, E. P., Gambhir, S. S. (2000). Seeing is believing: non-invasive, quantitative and repetitive imaging of reporter gene expression in living animals, using positron emission tomography. J Neurosci Res 59(6): 699–705.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Thakur, M. L., Coleman, R. E., Mayhall, C. G., Welch, M. J., Jr, . (1976). Preparation and evaluation of 111In-labeled leukocytes as an abscess imaging agent in dogs. Radiology 119(3): 731.CrossRefGoogle ScholarPubMed
Thakur, M. L., Lavender, J. P., Arnot, R. N., Silvester, D. J., Segal, A. W. (1977). Indium-111-labeled autologous leukocytes in man. J Nucl Med 18(10): 1014–1021.Google ScholarPubMed
Ju, S., Teng, G. J., Lu, H., Zhang, Y., Zhang, A., Chen, F., Ni, Y. (2007). In vivo MR tracking of mesenchymal stem cells in rat liver after intrasplenic transplantation. Radiology 245(1): 206–215.CrossRefGoogle ScholarPubMed
Guzman, R., Uchida, N., Bliss, T. M., He, D., Christopherson, K. K., Stellwagen, D., Capela, A., Greve, J., Malenka, R. C., Moseley, M. E., Palmer, T. D., Steinberg, G. K. (2007). Long-term monitoring of transplanted human neural stem cells in developmental and pathological contexts with MRI. Proceedings of the National Academy of Sciences of the United States of America 104(24): 10211–10216.CrossRefGoogle ScholarPubMed
Rice, H. E., Hsu, E. W., Sheng, H., Evenson, D. A., Freemerman, A. J., Safford, K. M., Provenzale, J. M., Warner, D. S., Johnson, G. A. (2007). Superparamagnetic iron oxide labeling and transplantation of adipose-derived stem cells in middle cerebral artery occlusion-injured mice. AJR Am J Roentgenol 188(4): 1101–1108.CrossRefGoogle ScholarPubMed
Chakraborty, S. K., Fitzpatrick, J. A., Phillippi, J. A., Andreko, S., Waggoner, A. S., Bruchez, M. P., Ballou, B. (2007). Cholera toxin B conjugated quantum dots for live cell labeling. Nano Lett 7(9): 2618–2626.CrossRefGoogle ScholarPubMed
Rosen, A. B., Kelly, D. J., Schuldt, A. J., Lu, J., Potapova, I. A., Doronin, S. V., Robichaud, K. J., Robinson, R. B., Rosen, M. R., Brink, P. R., Gaudette, G. R., Cohen, I. S. (2007). Finding fluorescent needles in the cardiac haystack: tracking human mesenchymal stem cells labeled with quantum dots for quantitative in vivo three-dimensional fluorescence analysis. Stem Cells (Dayton, Ohio) 25(8): 2128–2138.CrossRefGoogle ScholarPubMed
Keppler, A., Arrivoli, C., Sironi, L., Ellenberg, J. (2006). Fluorophores for live cell imaging of AGT fusion proteins across the visible spectrum. Biotechniques 41(2): 167–175.CrossRefGoogle ScholarPubMed
Hill, J. M., Dick, A. J., Raman, V. K., Thompson, R. B., Yu, Z. X., Hinds, K. A., Pessanha, B. S., Guttman, M. A., Varney, T. R., Martin, B. J., Dunbar, C. E., McVeigh, E. R., Lederman, R. J. (2003). Serial cardiac magnetic resonance imaging of injected mesenchymal stem cells. Circulation 108(8): 1009–1014.CrossRefGoogle ScholarPubMed
Rogers, W. J., Meyer, C. H., Kramer, C. M. (2006). Technology insight: in vivo cell tracking by use of MRI. Nat Clin Pract Cardiovasc Med 3(10): 554–562.CrossRefGoogle ScholarPubMed
Kang, W. J., Kang, H. J., Kim, H. S., Chung, J. K., Lee, M. C., Lee, D. S. (2006). Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47(8): 1295–1301.Google ScholarPubMed
Rini, J. N., Bhargava, K. K., Tronco, G. G., Singer, C., Caprioli, R., Marwin, S. E., Richardson, H. L., Nichols, K. J., Pugliese, P. V., Palestro, C. J. (2006). PET with FDG-labeled leukocytes versus scintigraphy with 111In-oxine-labeled leukocytes for detection of infection. Radiology 238(3): 978–987.CrossRefGoogle Scholar
Adonai, N., Nguyen, K. N., Walsh, J., Iyer, M., Toyokuni, T., Phelps, M. E., McCarthy, T., McCarthy, D. W., Gambhir, S. S. (2002). Ex vivo cell labeling with 64Cu-pyruvaldehyde-bis(N4-methylthiosemicarbazone) for imaging cell trafficking in mice with positron-emission tomography. Proceedings of the National Academy of Sciences of the United States of America 99(5): 3030–3035.CrossRefGoogle ScholarPubMed
Bindslev, L., Haack-Sorensen, M., Bisgaard, K., Kragh, L., Mortensen, S., Hesse, B., Kjaer, A., Kastrup, J. (2006). Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33(10): 1171–1177.CrossRefGoogle ScholarPubMed
Michalet, X., Pinaud, F. F., Bentolila, L. A., Tsay, J. M., Doose, S., Li, J. J., Sundaresan, G., Wu, A. M., Gambhir, S. S., Weiss, S.Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307(5709): 538–544.CrossRef
Kalchenko, V., Shivtiel, S., Malina, V., Lapid, K., Haramati, S., Lapidot, T., Brill, A., Harmelin, A. (2006). Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt 11(5): 050507.CrossRefGoogle ScholarPubMed
Muller-Borer, B. J., Collins, M. C., Gunst, P. R., Cascio, W. E., Kypson, A. P. (2007). Quantum dot labeling of mesenchymal stem cells. J Nanobiotechnology 5:9.CrossRefGoogle ScholarPubMed
Shah, B. S., Clark, P. A., Moioli, E. K., Stroscio, M. A., Mao, J. J. (2007). Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7(10): 3071–3079.CrossRefGoogle ScholarPubMed
Seleverstov, O., Zabirnyk, O., Zscharnack, M., Bulavina, L., Nowicki, M., Heinrich, J. M., Yezhelyev, M., Emmrich, F., O'Regan, R., Bader, A. (2006). Quantum dots for human mesenchymal stem cells labeling. A size-dependent autophagy activation. Nano Lett 6(12): 2826–2832.CrossRefGoogle ScholarPubMed
Lin, S., Xie, X., Patel, M. R., Yang, Y. H., Li, Z., Cao, F., Gheysens, O., Zhang, Y., Gambhir, S. S., Rao, J. H., Wu, J. C. (2007). Quantum dot imaging for embryonic stem cells.BMC Biotechnol 7(1):67.CrossRefGoogle ScholarPubMed
Montet, X., Figueiredo, J. L., Alencar, H., Ntziachristos, V., Mahmood, U., Weissleder, R. (2007). Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242(3): 751–758.CrossRefGoogle ScholarPubMed
Montet, X., Ntziachristos, V., Grimm, J., Weissleder, R. (2005). Tomographic fluorescence mapping of tumor targets. Cancer Res 65(14): 6330–6336.CrossRefGoogle ScholarPubMed
Roy, R., Thompson, A. B., Godavarty, A., Sevick-Muraca, E. M. (2005). Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry. IEEE Transactions on Medical Imaging 24(2): 137–154.CrossRefGoogle ScholarPubMed
Bos, C., Delmas, Y., Desmouliere, A., Solanilla, A., Hauger, O., Grosset, C., Dubus, I., Ivanovic, Z., Rosenbaum, J., Charbord, P., Combe, C., Bulte, J. W., Moonen, C. T., Ripoche, J., Grenier, N. (2004). In vivo MR imaging of intravascularly injected magnetically labeled mesenchymal stem cells in rat kidney and liver. Radiology 233(3): 781–789.CrossRefGoogle ScholarPubMed
Di Tucci, A. A., Matta, G., Deplano, S., Gabbas, A., Depau, C., Derudas, D., Caocci, G., Agus, A., Angelucci, E. (2008). Myocardial iron overload assessment by T2* magnetic resonance imaging in adult transfusion dependent patients with acquired anemias. Haematologica 93(9): 1385–1388.CrossRefGoogle ScholarPubMed
Ittrich, H., Lange, C., Togel, F., Zander, A. R., Dahnke, H., Westenfelder, C., Adam, G., Nolte-Ernsting, C. (2007). In vivo magnetic resonance imaging of iron oxide-labeled, arterially-injected mesenchymal stem cells in kidneys of rats with acute ischemic kidney injury: detection and monitoring at 3T. J Magn Reson Imaging 25(6): 1179–1191.CrossRefGoogle ScholarPubMed
Kraitchman, D. L., Heldman, A. W., Atalar, E., Amado, L. C., Martin, B. J., Pittenger, M. F., Hare, J. M., Bulte, J. W. (2003). In vivo magnetic resonance imaging of mesenchymal stem cells in myocardial infarction. Circulation 107(18): 2290–2293.CrossRefGoogle ScholarPubMed
Dick, A. J., Guttman, M. A., Raman, V. K., Peters, D. C., Pessanha, B. S., Hill, J. M., Smith, S., Scott, G., McVeigh, E. R., Lederman, R. J. (2003). Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108(23): 2899–2904.CrossRefGoogle ScholarPubMed
Watson, D. J., Walton, R. M., Magnitsky, S. G., Bulte, J. W., Poptani, H., Wolfe, J. H. (2006). Structure-specific patterns of neural stem cell engraftment after transplantation in the adult mouse brain. Hum Gene Ther 17(7): 693–704.CrossRefGoogle ScholarPubMed
Bengel, F. M., Schachinger, V., Dimmeler, S. (2005). Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 32(Suppl 2): S404–416.CrossRefGoogle ScholarPubMed
Bertini, I., Luchinat, C., Parigi, G., Quacquarini, G., Marzola, P., Cavagna, F. M. (1998). Off-resonance experiments and contrast agents to improve magnetic resonance imaging. Magn Reson Med 39(1): 124–131.CrossRefGoogle ScholarPubMed
Corot, C., Petry, K. G., Trivedi, R., Saleh, A., Jonkmanns, C., Bas, J. F., Blezer, E., Rausch, M., Brochet, B., Foster-Gareau, P., Baleriaux, D., Gaillard, S., Dousset, V. (2004). Macrophage imaging in central nervous system and in carotid atherosclerotic plaque using ultrasmall superparamagnetic iron oxide in magnetic resonance imaging. Invest Radiol 39(10): 619–625.CrossRefGoogle ScholarPubMed
Zhang, Y., Dodd, S. J., Hendrich, K. S., Williams, M., Ho, C. (2000). Magnetic resonance imaging detection of rat renal transplant rejection by monitoring macrophage infiltration. Kidney Int 58(3): 1300–1310.CrossRefGoogle ScholarPubMed
Li, Z., Suzuki, Y., Huang, M., Cao, F., Xie, X., Connolly, A. J., Yang, P. C., Wu, J. C. (2008). Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells (Dayton, Ohio) 26(4): 864–873.CrossRefGoogle ScholarPubMed
Thakur, M. L., Segal, A. W., Louis, L., Welch, M. J., Hopkins, J., Peters, T. J. (1977). Indium-111-labeled cellular blood components: mechanism of labeling and intracellular location in human neutrophils. J Nucl Med 18(10): 1022–1026.Google ScholarPubMed
Kraitchman, D. L., Tatsumi, M., Gilson, W. D., Ishimori, T., Kedziorek, D., Walczak, P., Segars, W. P., Chen, H. H., Fritzges, D., Izbudak, I., Young, R. G., Marcelino, M., Pittenger, M. F., Solaiyappan, M., Boston, R. C., Tsui, B. M., Wahl, R. L., Bulte, J. W. (2005). Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112(10): 1451–1461.CrossRefGoogle ScholarPubMed
Zhou, R., Thomas, D. H., Qiao, H., Bal, H. S., Choi, S. R., Alavi, A., Ferrari, V. A., Kung, H. F., Acton, P. D. (2005). In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 46(5): 816–822.Google ScholarPubMed
Doyle, B., Kemp, B. J., Chareonthaitawee, P., Reed, C., Schmeckpeper, J., Sorajja, P., Russell, S., Araoz, P., Riederer, S. J., Caplice, N. M. (2007). Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction.J Nucl Med 48(10): 1708–1714.CrossRefGoogle ScholarPubMed
Hofmann, M., Wollert, K. C., Meyer, G. P., Menke, A., Arseniev, L., Hertenstein, B., Ganser, A., Knapp, W. H., Drexler, H. (2005). Monitoring of bone marrow cell homing into the infarcted human myocardium. Circulation 111(17): 2198–2202.CrossRefGoogle ScholarPubMed
Troy, T., Jekic-McMullen, D., Sambucetti, L., Rice, B. (2004). Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3(1): 9–23.CrossRefGoogle ScholarPubMed
Beeres, S. L., Bengel, F. M., Bartunek, J., Atsma, D. E., Hill, J. M., Vanderheyden, M., Penicka, M., Schalij, M. J., Wijns, W., Bax, J. J.Role of imaging in cardiac stem cell therapy. J Am Coll Cardiol 49(11): 1137–1148.CrossRef
Bengel, F. M., Gambhir, S. S. (2005). Clinical molecular imaging and therapy-moving ahead together. Eur J Nucl Med Mol Imaging 32(Suppl 2): S323.CrossRefGoogle ScholarPubMed
Chen, I. Y., Greve, J. M., Gheysens, O., Willmann, J. K., Rodriguez-Porcel, M., Chu, P., Sheikh, A., Faranesh, T., Paulmurugan, R., Yang, P. C., Wu, J. C., and Gambhir, S. S. (2008). Comparison of optical bioluminescence reporter gene and superparamagnetic iron oxide MR contrast agent as cell markers for non-invasive imaging of cardiac cell transplantation. Mol Imag Biol 2008 11(3): 178–87.CrossRefGoogle Scholar
Wu, J. C., Tseng, J. R., Gambhir, S. S. (2004). Molecular imaging of cardiovascular gene products. J Nucl Cardiol 11(4): 491–505.CrossRefGoogle ScholarPubMed
Slotkin, J. R., Chakrabarti, L., Dai, H. N., Carney, R. S., Hirata, T., Bregman, B. S., Gallicano, G. I., Corbin, J. G., Haydar, T. F. (2007). In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236(12): 3393–3401.CrossRefGoogle ScholarPubMed
Keren, S., Gheysens, O., Levin, C. S., Gambhir, S. S. (2008). A comparison between a time domain and continuous wave small animal optical imaging system. IEEE Transactions on Medical Imaging 27(1): 58–63.CrossRefGoogle ScholarPubMed
Kumar, A. T., Raymond, S. B., Dunn, A. K., Bacskai, B. J., Boas, D. A. (2008). A time domain fluorescence tomography system for small animal imaging. IEEE Transactions on Medical Imaging 27(8): 1152–1163.CrossRefGoogle ScholarPubMed
Model, R., Orlt, M., Walzel, M., Hunlich, R. (1998). Optical imaging: three-dimensional approximation and perturbation approaches for time-domain data. Applied Optics 37(34): 7968–7976.CrossRefGoogle ScholarPubMed
Ray, P., Tsien, R., Gambhir, S. S. (2007). Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67(7): 3085–3093.CrossRefGoogle ScholarPubMed
Kesarwala, A. H., Prior, J. L., Sun, J., Harpstrite, S. E., Sharma, V., Piwnica-Worms, D. (2006). Second-generation triple reporter for bioluminescence, micro-positron emission tomography, and fluorescence imaging. Mol Imaging 5(4): 465–474.CrossRefGoogle ScholarPubMed
Li, Z., Wu, J. C., Sheikh, A. Y., Kraft, D., Cao, F., Xie, X., Patel, M., Gambhir, S. S., Robbins, R. C., Cooke, J. P., Wu, J. C. (2007). Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116(11 Suppl): I46–54.CrossRefGoogle ScholarPubMed
Chen, I. Y., Wu, J. C., Min, J. J., Sundaresan, G., Lewis, X., Liang, Q., Herschman, H. R., Gambhir, S. S. (2004). Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109(11): 1415–1420.CrossRefGoogle ScholarPubMed
Wu, J. C., Chen, I. Y., Sundaresan, G., Min, J. J., De, A., Qiao, J. H., Fishbein, M. C., Gambhir, S. S.Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography. Circulation 108(11): 1302–1305.CrossRef
Rodriguez-Porcel, M., Gheysens, O., Chen, I. Y., Wu, J. C., Gambhir, S. S. (2005). Image-guided cardiac cell delivery using high-resolution small-animal ultrasound. Mol Ther 12(6): 1142–1147.CrossRefGoogle ScholarPubMed
Loening, A. M., Wu, A. M., Gambhir, S. S. (2007). Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4(8): 641–643.CrossRefGoogle ScholarPubMed
Sheikh, A. Y., Lin, S. A., Cao, F., Cao, Y., Bogt, K. E., Chu, P., Chang, C. P., Contag, C. H., Robbins, R. C., Wu, J. C. (2007). Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells (Dayton, Ohio) 25(10): 2677–2684.CrossRefGoogle ScholarPubMed
Cao, F., Lin, S., Xie, X., Ray, P., Patel, M., Zhang, X., Drukker, M., Dylla, S. J., Connolly, A. J., Chen, X., Weissman, I. L., Gambhir, S. S., Wu, J. C. (2006). In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113(7): 1005–1014.CrossRefGoogle ScholarPubMed
Roth, D. J., Jansen, E. D., Powers, A. C., Wang, T. G. (2006). A novel method of monitoring response to islet transplantation: bioluminescent imaging of an NF-kB transgenic mouse model. Transplantation 81(8): 1185–1190.CrossRefGoogle ScholarPubMed
Lu, Y., Dang, H., Middleton, B., Zhang, Z., Washburn, L., Campbell-Thompson, M., Atkinson, M. A., Gambhir, S. S., Tian, J., Kaufman, D. L. (2004). Bioluminescent monitoring of islet graft survival after transplantation. Mol Ther 9(3): 428–435.CrossRefGoogle ScholarPubMed
Soloviev, V. Y. (2007). Tomographic bioluminescence imaging with varying boundary conditions. Applied Optics 46(14): 2778–2784.CrossRefGoogle ScholarPubMed
Lv, Y., Tian, J., Cong, W., Wang, G., Yang, W., Qin, C., Xu, M. (2007). Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Phys Med Biol 52(15): 4497–4512.CrossRefGoogle ScholarPubMed
Lu, Y., Dang, H., Middleton, B., Campbell-Thompson, M., Atkinson, M. A., Gambhir, S. S., Tian, J., Kaufman, D. L. (2006). Long-term monitoring of transplanted islets using positron emission tomography. Mol Ther 14(6): 851–856.CrossRefGoogle ScholarPubMed
Lu, Y., Dang, H., Middleton, B., Zhang, Z., Washburn, L., Stout, D. B., Campbell-Thompson, M., Atkinson, M. A., Phelps, M., Gambhir, S. S., Tian, J., Kaufman, D. L. (2006). Noninvasive imaging of islet grafts using positron-emission tomography. Proceedings of the National Academy of Sciences of the United States of America 103(30): 11294–11299.CrossRefGoogle ScholarPubMed
Kang, J. H., Lee, D. S., Paeng, J. C., Lee, J. S., Kim, Y. H., Lee, Y. J., Hwang, D. W., Jeong, J. M., Lim, S. M., Chung, J. K., Lee, M. C. (2005). Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 46(3): 479–483.Google ScholarPubMed
Kim, Y. H., Lee, D. S., Kang, J. H., Lee, Y. J., Chung, J. K., Roh, J. K., Kim, S. U., Lee, M. C. (2005). Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med 46(2): 305–311.Google ScholarPubMed
Miyagawa, M., Anton, M., Wagner, B., Haubner, R., Souvatzoglou, M., Gansbacher, B., Schwaiger, M., Bengel, F. M. (2005). Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene. Eur J Nucl Med Mol Imaging 32(9): 1108–1114.CrossRefGoogle ScholarPubMed
Hou, D., Youssef, E. A., Brinton, T. J., Zhang, P., Rogers, P., Price, E. T., Yeung, A. C., Johnstone, B. H., Yock, P. G., March, K. L. (2005). Radiolabeled cell distribution after intramyocardial, intracoronary, and interstitial retrograde coronary venous delivery: implications for current clinical trials. Circulation 112(9 Suppl): I150–156.Google ScholarPubMed
Karmarkar, P. V., Kraitchman, D. L., Izbudak, I., Hofmann, L. V., Amado, L. C., Fritzges, D., Young, R., Pittenger, M., Bulte, J. W., Atalar, E. (2004). MR-trackable intramyocardial injection catheter. Magn Reson Med 51(6): 1163–1172.CrossRefGoogle ScholarPubMed
Springer, M. L., Sievers, R. E., Viswanathan, M. N., Yee, M. S., Foster, E., Grossman, W., Yeghiazarians, Y. (2005). Closed-chest cell injections into mouse myocardium guided by high-resolution echocardiography. Am J Physiol Heart Circ Physiol 289(3): H1307–1314.CrossRefGoogle ScholarPubMed
Wu, J. C., Sundaresan, G., Iyer, M., Gambhir, S. S. (2001). Noninvasive optical imaging of firefly luciferase reporter gene expression in skeletal muscles of living mice. Mol Ther 4(4): 297–306.CrossRefGoogle ScholarPubMed
Kutschka, I., Kofidis, T., Chen, I. Y., Degenfeld, G., Zwierzchoniewska, M., Hoyt, G., Arai, T., Lebl, D. R., Hendry, S. L., Sheikh, A. Y., Cooke, D. T., Connolly, A., Blau, H. M., Gambhir, S. S., Robbins, R. C. (2006). Adenoviral human BCL-2 transgene expression attenuates early donor cell death after cardiomyoblast transplantation into ischemic rat hearts. Circulation 114(1 Suppl): I174–180.CrossRefGoogle ScholarPubMed
Kutschka, I., Chen, I. Y., Kofidis, T., Arai, T., Degenfeld, G., Sheikh, A. Y., Hendry, S. L., Pearl, J., Hoyt, G., Sista, R., Yang, P. C., Blau, H. M., Gambhir, S. S., Robbins, R. C. (2006). Collagen matrices enhance survival of transplanted cardiomyoblasts and contribute to functional improvement of ischemic rat hearts. Circulation 114(1 Suppl): I167–173.CrossRefGoogle ScholarPubMed
Krishnan, M., Park, J. M., Cao, F., Wang, D., Paulmurugan, R., Tseng, J. R., Gonzalgo, M. L., Gambhir, S. S., Wu, J. C. (2006). Effects of epigenetic modulation on reporter gene expression: implications for stem cell imaging. Faseb J 20(1): 106–108.CrossRefGoogle ScholarPubMed
Hu, K., Denk, L., Vries, U., Minuth, W. W. (2007). Chemically defined medium environment for the development of renal stem cells into tubules. Biotechnol J 2(8): 992–995.CrossRefGoogle ScholarPubMed
Kasper, G., Glaeser, J. D., Geissler, S., Ode, A., Tuischer, J., Matziolis, G., Perka, C., Duda, G. N. (2007). Matrix metalloprotease activity is an essential link between mechanical stimulus and mesenchymal stem cell behavior. Stem Cells (Dayton, Ohio) 25(8): 1985–1994.CrossRefGoogle ScholarPubMed
Vats, A., Bielby, R. C., Tolley, N., Dickinson, S. C., Boccaccini, A. R., Hollander, A. P., Bishop, A. E., Polak, J. M.Chondrogenic differentiation of human embryonic stem cells: the effect of the micro-environment. Tissue Eng 12(6): 1687–1697.CrossRef
An, Y. H., Wang, H. Y., Gao, Z. X., Wang, Z. C. (2004). Differentiation of rat neural stem cells and its relationship with environment. Biomed Environ Sci 17(1): 1–7.Google ScholarPubMed
Napoli, C., Williams-Ignarro, S., Nigris, F., Rosa, G., Lerman, L. O., Farzati, B., Matarazzo, A., Sica, G., Botti, C., Fiore, A., Byrns, R. E., Sumi, D., Sica, V., Ignarro, L. J. (2005). Beneficial effects of concurrent autologous bone marrow cell therapy and metabolic intervention in ischemia-induced angiogenesis in the mouse hindlimb. Proceedings of the National Academy of Sciences of the United States of America 102(47): 17202–17206.CrossRefGoogle ScholarPubMed
Davis, M. E., Hsieh, P. C., Takahashi, T., Song, Q., Zhang, S., Kamm, R. D., Grodzinsky, A. J., Anversa, P., Lee, R. T. (2006). Local myocardial insulin-like growth factor 1 (IGF-1) delivery with biotinylated peptide nanofibers improves cell therapy for myocardial infarction. Proceedings of the National Academy of Sciences of the United States of America 103(21): 8155–8160.CrossRefGoogle ScholarPubMed
Choi, J. H., Hur, J., Yoon, C. H., Kim, J. H., Lee, C. S., Youn, S. W., Oh, I. Y., Skurk, C., Murohara, T., Park, Y. B., Walsh, K., Kim, H. S. (2004). Augmentation of therapeutic angiogenesis using genetically modified human endothelial progenitor cells with altered glycogen synthase kinase-3beta activity. J Biol Chem 279(47): 49430–49438.CrossRefGoogle ScholarPubMed
Sun, W., Wang, Q., Zhang, L., Pan, J., Zhang, M., Lu, G., Yao, H., Wang, J., Cao, X. (2002). TGF-beta(1) gene modified immature dendritic cells exhibit enhanced tolerogenicity but induce allograft fibrosis in vivo. J Mol Med 80(8): 514–523.CrossRefGoogle ScholarPubMed
Suzuki, K., Murtuza, B., Beauchamp, J. R., Smolenski, R. T., Varela-Carver, A., Fukushima, S., Coppen, S. R., Partridge, T. A., Yacoub, M. H. (2004). Dynamics and mediators of acute graft attrition after myoblast transplantation to the heart. Faseb J 18(10): 1153–1155.CrossRefGoogle ScholarPubMed
Mangi, A. A., Noiseux, N., Kong, D., He, H., Rezvani, M., Ingwall, J. S., Dzau, V. J. (2003). Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat Med 9(9): 1195–1201.CrossRefGoogle ScholarPubMed
Heng, B. C., Cao, T., Lee, E. H. (2004). Directing stem cell differentiation into the chondrogenic lineage in vitro. Stem Cells (Dayton, Ohio) 22(7): 1152–1167.CrossRefGoogle ScholarPubMed
Keller, G. (2005). Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 19(10): 1129–1155.CrossRefGoogle ScholarPubMed
Krencik, R., Zhang, S. C. (2006). Stem cell neural differentiation: A model for chemical biology. Curr Opin Chem Biol 10(6): 592–597.CrossRefGoogle ScholarPubMed
Odorico, J. S., Kaufman, D. S., Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells (Dayton, Ohio) 19(3): 193–204.CrossRefGoogle ScholarPubMed
Bloor, C. M., White, F. C., Roth, D. M. (1992). The pig as a model of myocardial ischemia and gradual coronary artery occlusion. In: Swindle, M. M., Moody, D. C., Phillips, L. D., eds. Swine as models in biomedical research. Ames, IA: Iowa State University Press: 163–175.Google Scholar
Rodriguez-Porcel, M., Brinton, T. J., Chen, I. Y., Gheysens, O., Lyons, J., Ikeno, F., Willman, J. K., Wu, L., Wu, J. C., Yeung, A. C., Yock, P. Y., Gambhir, S. S. (2007). Reporter gene imaging following percutaneous delivery in swine: moving towards clinical application. J Am Coll Cardiol (in press).Google Scholar
Bengel, F. M., Anton, M., Richter, T., Simoes, M. V., Haubner, R., Henke, J., Erhardt, W., Reder, S., Lehner, T., Brandau, W., Boekstegers, P., Nekolla, S. G., Gansbacher, B., Schwaiger, M. (2003). Noninvasive imaging of transgene expression by use of positron emission tomography in a pig model of myocardial gene transfer. Circulation 108(17): 2127–2133.CrossRefGoogle Scholar
Cohen, B., Dafni, H., Meir, G., Harmelin, A., Neeman, M. (2005). Ferritin as an endogenous MRI reporter for noninvasive imaging of gene expression in C6 glioma tumors. Neoplasia 7(2): 109–117.CrossRefGoogle ScholarPubMed
Gilad, A. A., Winnard, P. T., Zijl, P. C., Bulte, J. W. (2007). Developing MR reporter genes: promises and pitfalls. NMR Biomed 20(3): 275–290.CrossRefGoogle ScholarPubMed
Weissleder, R., Simonova, M., Bogdanova, A., Bredow, S., Enochs, W. S., Bogdanov, A. (1997). MR imaging and scintigraphy of gene expression through melanin induction. Radiology 204(2): 425–429.CrossRefGoogle ScholarPubMed
Linden, R. M., Ward, P., Giraud, C., Winocour, E., Berns, K. I. (1996). Site-specific integration by adeno-associated virus. Proceedings of the National Academy of Sciences of the United States of America 93(21): 11288–11294.CrossRefGoogle ScholarPubMed
Recchia, A., Mavilio, F. (2006). Site-specific integration into the human genome: ready for clinical application?Rejuvenation Research 9(4): 446–449.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×