Book contents
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
A Pre-FUSE View of H2
from 3 - Observations and Models
Published online by Cambridge University Press: 04 August 2010
- Frontmatter
- Contents
- Preface
- Conference participants
- Conference photograph / poster
- 1 Physics of H2 and HD
- 2 Formation - Destruction
- 3 Observations and Models
- Non Stationary C-shocks: H2 Emission in Molecular Outflows
- The Ortho/Para Ratio in C and J-type Shocks
- Theoretical Models of Photodissociation Fronts
- ISO Spectroscopy of H2 in Star Forming Regions
- Observations of the H2 Ortho-Para Ratio in Photodissociation Regions
- H2 Emission from CRL618
- Hydrogen in Photodissociation Regions: NGC2023 and NGC7023
- A Pre-FUSE View of H2
- H2 Absorption Line Measurements with ORFEUS
- Ultraviolet Observations of Molecular Hydrogen in Interstellar Space
- FUSE and Deuterated Molecular Hydrogen
- ISO-SWS Observations of H2 in Galactic Sources
- H2 in Molecular Supernova Remnants
- 3D Integral Field H2 Spectroscopy in Outflows
- Near-Infrared Imaging and [OI] Spectroscopy of IC443 using 2MASS and ISO
- ISOCAM Spectro-imaging of the Supernova Remnant IC443
- Spatial Structure of a Photo-Dissociation Region in Ophiucus
- Tracing H2 Via Infrared Dust Extinction
- The Small Scale Structure of H2 Clouds
- Hot Chemistry in the Cold Diffuse Medium: Spectral Signature in the H2 Rotational Lines
- H2 Observations of the OMC-1 Outflow with the ISO-SWS
- 4 Extragalactic and Cosmology
- 5 Outlook
- Author index
Summary
Observations of the interstellar medium within 1 kpc of the Sun with the Copernicus satellite showed a value of the gas to dust ratio that varies by less than a factor of two from its average. The fraction of hydrogen that is molecular is well described by a steady state model that balances formation on grains with photo-destruction. However, in contrast to the local interstellar medium, both in quasar absorption line systems and in circumstellar disks around young stars, there appears to be relatively little H2. We particularly focus on estimating the amount of H2 in circumstellar disks around main sequence stars – the environment where planets form.
Introduction
One of the main results achieved with the Copernicus satellite was the systematic measurement of interstellar H and H2 within about 1 kpc of the Sun. It was found (Savage et al. 1977, Bohlin, Savage & Drake 1978) that the dust to gas ratio is uniform to within a factor of 2 of its average value with the mass in gas being approximately 100 times larger than the mass in dust. Also, the fraction of hydrogen that is molecular, [2N(H2)]/[N(H) + 2N(H2)], is well described by a standard steady state model (Hollenbach, Werner & Salpeter 1971). In this standard model, the H2 is formed on the surface of grains with a rate of about 3 × 1017 cm3 s−1 (Jura 1975) and destroyed by the absorption of ultraviolet photons with a rate near 5 × 10−11 s−1 when the gas is optically thin (Jura 1974).
- Type
- Chapter
- Information
- Molecular Hydrogen in Space , pp. 161 - 164Publisher: Cambridge University PressPrint publication year: 2000