Book contents
- Frontmatter
- Contents
- Contributors
- Editors' Preface
- Isotopic-labelling methods for deciphering the function of uncultured micro-organisms
- Biofilms and metal geochemistry: the relevance of micro-organism-induced geochemical transformations
- Minerals, mats, pearls and veils: themes and variations in giant sulfur bacteria
- Soil micro-organisms in Antarctic dry valleys: resource supply and utilization
- New insights into bacterial cell-wall structure and physico-chemistry: implications for interactions with metal ions and minerals
- Horizontal gene transfer of metal homeostasis genes and its role in microbial communities of the deep terrestrial subsurface
- Biosilicification: the role of cyanobacteria in silica sinter deposition
- Metabolic diversity in the microbial world: relevance to exobiology
- Biogeochemical cycling in polar, temperate and tropical coastal zones: similarities and differences
- Fungal roles and function in rock, mineral and soil transformations
- The deep intraterrestrial biosphere
- Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans
- Mechanisms and environmental impact of microbial metal reduction
- New insights into the physiology and regulation of the anaerobic oxidation of methane
- Biogeochemical roles of fungi in marine and estuarine habitats
- Role of micro-organisms in karstification
- Index
Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans
Published online by Cambridge University Press: 06 July 2010
- Frontmatter
- Contents
- Contributors
- Editors' Preface
- Isotopic-labelling methods for deciphering the function of uncultured micro-organisms
- Biofilms and metal geochemistry: the relevance of micro-organism-induced geochemical transformations
- Minerals, mats, pearls and veils: themes and variations in giant sulfur bacteria
- Soil micro-organisms in Antarctic dry valleys: resource supply and utilization
- New insights into bacterial cell-wall structure and physico-chemistry: implications for interactions with metal ions and minerals
- Horizontal gene transfer of metal homeostasis genes and its role in microbial communities of the deep terrestrial subsurface
- Biosilicification: the role of cyanobacteria in silica sinter deposition
- Metabolic diversity in the microbial world: relevance to exobiology
- Biogeochemical cycling in polar, temperate and tropical coastal zones: similarities and differences
- Fungal roles and function in rock, mineral and soil transformations
- The deep intraterrestrial biosphere
- Iron, nitrogen, phosphorus and zinc cycling and consequences for primary productivity in the oceans
- Mechanisms and environmental impact of microbial metal reduction
- New insights into the physiology and regulation of the anaerobic oxidation of methane
- Biogeochemical roles of fungi in marine and estuarine habitats
- Role of micro-organisms in karstification
- Index
Summary
INTRODUCTION
Primary productivity in the ocean amounts to the net assimilation of CO2 equivalent to about 50 Pg (petagram, i.e. 1015 g) C year–1, while on land this is approximately 60 Pg C year-1 (Field et al., 1998). Almost all of this primary productivity involves photosynthesis, and in the ocean it occurs only in the top few hundred metres, even in waters with the smallest light attenuation (Falkowski & Raven, 1997). About 1 Pg C of marine primary productivity involves benthic organisms, i.e. those growing on the substratum (Field et al., 1998), in the very small fraction of the ocean which is close enough to the surface to permit adequate photosynthetically active radiation (PAR) to allow photolithotrophic growth. This depth at which photosynthetic growth is just possible varies in time and space, and defines the bottom of the euphotic zone (Falkowski & Raven, 1997). The remaining ∼49 Pg C is assimilated by phytoplankton in the water column (Field et al., 1998). This chapter will concentrate on the planktonic realm, while acknowledging the importance of marine benthic primary producers and their interactions with micro-organisms (e.g. Dudley et al., 2001; Raven et al., 2002; Raven & Taylor, 2003; Cooke et al., 2004; Walker et al., 2004).
The global net primary productivity of the oceans is less than that on land, despite about 70 % of the Earth being covered in ocean and primary productivity over considerable areas of land being limited by water supply.
- Type
- Chapter
- Information
- Micro-organisms and Earth Systems , pp. 247 - 272Publisher: Cambridge University PressPrint publication year: 2005
- 12
- Cited by