Book contents
- Frontmatter
- Contents
- Preface
- List of Participants
- I INTRODUCTION
- II THE INNER PARSEC
- III THE CIRCUMNUCLEAR REGION
- IV GAS DYNAMICS AND STAR FORMATION IN BARRED AND NORMAL GALAXIES
- V NUCLEAR GAS AND LARGE-SCALE PROPERTIES OF AGN AND STARBURST HOSTS
- VI HOST GALAXY-AGN-NUCLEAR STARBURST CONNECTION
- VII GALAXY INTERACTIONS AND INDUCED ACTIVITY
- Induced Starbursts in Mergers (Invited paper)
- Dynamics of Gas in Major Mergers (Invited paper)
- Kinematic Instabilities, Interactions, and Fueling of Seyfert Nuclei
- Stellar Velocity Dispersion in NGC 6240 and Arp 220
- Possible Atomic-to-Molecular Gas Transition in the Center of Merging Galaxies
- SOs with Counter-Rotating Gas: NGC 3941 and NGC 7332
- Evidence for a Tidal Interaction in the Seyfert Galaxy Markarian 315
- Interaction between the Galaxies IC 2163 and NGC 2207 358
- The NGC 5775/4 Interacting System
- High Resolution CO and HI Observations of an Interacting Galaxy NGC 3627.
- Mass-Transfer Induced Starbursts in Interacting Galaxies
- First HST Images of a Compact Group: Seyfert's Sextet (Poster paper)
- The X-Ray Structure of Merging Galaxies (Poster paper)
- The Galaxy Activity-Interaction Connection in Low Luminosity Radio Galaxies (Poster paper)
- Multi-Wavelength Observations of “Interactive” Galaxies (Poster paper)
- Seyfert Nuclei in Interacting/Merging Galaxies (Poster paper)
- Where Is the Induced Star Formation in Interacting Galaxies? (Poster paper)
- Interacting Galaxy Pairs and Seyfert Activity (Poster paper)
- Searching for Mass Transfer in E+S Pairs (Poster paper)
- K542, a Hierarchical Pair with Mass Transfer? (Poster paper)
- Kar 29: Tidal Effects from a Second or Third Party (Poster paper)
- The Fundamental Plane and Early-Type Galaxies in Binaries (Poster paper)
- Dumbbell Galaxies and Multiple Nuclei in Rich Clusters: Radio Data (Poster paper)
- Tidal Deformation of Galaxies in Binary Systems (Poster paper)
- Formation of Dwarf Galaxies During Close Tidal Encounters (Poster paper)
- Gas Fueling to the Central 10 pc in Merging Galaxies (Poster paper)
- Gas in Shell Galaxies: Non-Spherical Potentials (Poster paper)
- Merging and Multiply–Nucleated Brightest Cluster Galaxies (Poster paper)
- Self–Gravitating Simulations of M51 Multiple Encounter History (Poster paper)
- Formation of Ring Structures through N–Body Simulations (Poster paper)
- Self–Consistent Evolution of Ring Galaxies (Poster paper)
- Interacting Galaxy Pair Arp 86 (Poster paper)
- VIII GAS DYNAMICS IN ELLIPTICALS
- IX AGN AND STARBURST HOSTS AT LARGE REDSHIFTS
- X CONFERENCE SUMMARY
- Subject Index
- Object Index
- Author Index
Gas Fueling to the Central 10 pc in Merging Galaxies (Poster paper)
Published online by Cambridge University Press: 05 May 2010
- Frontmatter
- Contents
- Preface
- List of Participants
- I INTRODUCTION
- II THE INNER PARSEC
- III THE CIRCUMNUCLEAR REGION
- IV GAS DYNAMICS AND STAR FORMATION IN BARRED AND NORMAL GALAXIES
- V NUCLEAR GAS AND LARGE-SCALE PROPERTIES OF AGN AND STARBURST HOSTS
- VI HOST GALAXY-AGN-NUCLEAR STARBURST CONNECTION
- VII GALAXY INTERACTIONS AND INDUCED ACTIVITY
- Induced Starbursts in Mergers (Invited paper)
- Dynamics of Gas in Major Mergers (Invited paper)
- Kinematic Instabilities, Interactions, and Fueling of Seyfert Nuclei
- Stellar Velocity Dispersion in NGC 6240 and Arp 220
- Possible Atomic-to-Molecular Gas Transition in the Center of Merging Galaxies
- SOs with Counter-Rotating Gas: NGC 3941 and NGC 7332
- Evidence for a Tidal Interaction in the Seyfert Galaxy Markarian 315
- Interaction between the Galaxies IC 2163 and NGC 2207 358
- The NGC 5775/4 Interacting System
- High Resolution CO and HI Observations of an Interacting Galaxy NGC 3627.
- Mass-Transfer Induced Starbursts in Interacting Galaxies
- First HST Images of a Compact Group: Seyfert's Sextet (Poster paper)
- The X-Ray Structure of Merging Galaxies (Poster paper)
- The Galaxy Activity-Interaction Connection in Low Luminosity Radio Galaxies (Poster paper)
- Multi-Wavelength Observations of “Interactive” Galaxies (Poster paper)
- Seyfert Nuclei in Interacting/Merging Galaxies (Poster paper)
- Where Is the Induced Star Formation in Interacting Galaxies? (Poster paper)
- Interacting Galaxy Pairs and Seyfert Activity (Poster paper)
- Searching for Mass Transfer in E+S Pairs (Poster paper)
- K542, a Hierarchical Pair with Mass Transfer? (Poster paper)
- Kar 29: Tidal Effects from a Second or Third Party (Poster paper)
- The Fundamental Plane and Early-Type Galaxies in Binaries (Poster paper)
- Dumbbell Galaxies and Multiple Nuclei in Rich Clusters: Radio Data (Poster paper)
- Tidal Deformation of Galaxies in Binary Systems (Poster paper)
- Formation of Dwarf Galaxies During Close Tidal Encounters (Poster paper)
- Gas Fueling to the Central 10 pc in Merging Galaxies (Poster paper)
- Gas in Shell Galaxies: Non-Spherical Potentials (Poster paper)
- Merging and Multiply–Nucleated Brightest Cluster Galaxies (Poster paper)
- Self–Gravitating Simulations of M51 Multiple Encounter History (Poster paper)
- Formation of Ring Structures through N–Body Simulations (Poster paper)
- Self–Consistent Evolution of Ring Galaxies (Poster paper)
- Interacting Galaxy Pair Arp 86 (Poster paper)
- VIII GAS DYNAMICS IN ELLIPTICALS
- IX AGN AND STARBURST HOSTS AT LARGE REDSHIFTS
- X CONFERENCE SUMMARY
- Subject Index
- Object Index
- Author Index
Summary
ABSTRACT
Some of ultra-luminous galaxy mergers show a sign of quasar-like activity. We have numerically investigated the dynamical evolution of the interstellar gas in the late phase of disk galaxy mergers in order to clarify how the gas dynamics is related to the triggering of quasar-like activity. It is found that in most cases the efficient gas infall to the central 10 pc of the nucleus is realized only after the coalescence of two galaxy cores. This suggests that the quasar-like activity tends to appear only after the merger has been completed.
MODELS
The cloud particle scheme has been used to follow the gas response to the time dependent gravitational field made by two galaxy cores spiraling into the mass center of the system. We have neglected the influence of galactic disks because the inner region of a late phase merger is likely to be dynamically dominated by spherical components (e.g., bulges and nuclei). The spherical component (hereafter core) of each galaxy is assumed to be rigid. The self-gravity of the gas has been neglected. The dissipational nature of gas has been included by making gas clouds collide inelastically. Gas clouds are initially distributed in a disk around one of two nuclei.
- Type
- Chapter
- Information
- Mass-Transfer Induced Activity in Galaxies , pp. 406 - 407Publisher: Cambridge University PressPrint publication year: 1994