Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-13T10:34:05.302Z Has data issue: false hasContentIssue false

5 - 2D Boussinesq magnetoconvection

Published online by Cambridge University Press:  05 November 2014

N. O. Weiss
Affiliation:
University of Cambridge
M. R. E. Proctor
Affiliation:
University of Cambridge
Get access

Summary

In this chapter we penetrate further into the nonlinear domain, relying principally on the results of careful numerical experiments, and confining our attention to the simplest and most thoroughly studied configurations. Our primary aim is to extract qualitative understanding from the computations. Once interpreted, they provide a basis for investigating the more complicated structures and patterns that will be treated later in the book.

We begin by extending the mildly nonlinear results in Chapter 4 to cover convection in a rectangular box when the magnetic Reynolds number is large and the magnetic field becomes dynamically important. Then we study the analogous problem in a cylindrical domain with axial symmetry imposed. Next we return to Cartesian models and to the chaotic behaviour that was introduced in Section 4.3, in order to confirm that the Shilnikov effect is present in the full system; in addition, we find a regime with Lorenz-like chaos. Thereafter we consider the effects of relaxing the lateral constraints and thereby allowing travelling waves, together with steady convection in tilted cells and vigorous pulsating waves. That leads us to consider patterns of convection in extended regions, where rolls are modulated at longer wavelengths and localized (or isolated) states can appear. Then we proceed to the strong field limit, and consider behaviour when cells are vertically elongated and very slender. Finally, we discuss the effects of inclined magnetic fields on nonlinear convection.

Type
Chapter
Information
Magnetoconvection , pp. 113 - 179
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×