Skip to main content Accessibility help
×
Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T11:22:56.175Z Has data issue: false hasContentIssue false

3 - Clinical Pharmacokinetics

Principles Underlying Kinetic and Pharmacodynamic Drug Interactions; Clinically Relevant Drug Interactions and Their Management

Published online by Cambridge University Press:  09 February 2024

Jonathan M. Meyer
Affiliation:
University of California, San Diego
Stephen M. Stahl
Affiliation:
University of California, San Diego
Get access

Summary

As clinical psychopharmacology moves into the twenty-first century, there is an emphasis on rational prescribing practices informed by pharmacokinetic principles and clinical dictates. Publications note that certain oral medications which historically were dosed more than once per day (e.g. most antipsychotics including clozapine) have comparable efficacy with nightly (QHS) dosing for the majority of patients [1–3].

Type
Chapter
Information
The Lithium Handbook
Stahl's Handbooks
, pp. 151 - 202
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Takeuchi, H., Powell, V., Geisler, S., et al. (2016). Clozapine administration in clinical practice: Once-daily versus divided dosing. Acta Psychiatr Scand, 134, 234240.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2019). The Clozapine Handbook (Stahl’s Handbooks). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Kitagawa, K., So, R., Nomura, N., et al. (2022). Clozapine once-daily versus divided dosing regimen: A cross-sectional study in Japan. J Clin Psychopharmacol, 42, 163168.CrossRefGoogle ScholarPubMed
Pfeiffer, P. N., Ganoczy, D. and Valenstein, M. (2008). Dosing frequency and adherence to antipsychotic medications. Psychiatr Serv, 59, 12071210.CrossRefGoogle ScholarPubMed
Meyer, J. M. and Stahl, S. M. (2021). The Clinical Use of Antipsychotic Plasma Levels (Stahl’s Handbooks). New York: Cambridge University Press.CrossRefGoogle Scholar
Loebel, A., Cucchiaro, J., Sarma, K., et al. (2013). Efficacy and safety of lurasidone 80 mg/day and 160 mg/day in the treatment of schizophrenia: A randomized, double-blind, placebo- and active-controlled trial. Schizophr Res, 145, 101109.CrossRefGoogle ScholarPubMed
Hagi, K., Tadashi, N. and Pikalov, A. (2020). S5. Does the time of drug administration alter the adverse event risk of lurasidone? Schizophr Bull, 46, S3132.CrossRefGoogle Scholar
Carter, L., Zolezzi, M. and Lewczyk, A. (2013). An updated review of the optimal lithium dosage regimen for renal protection. Can J Psychiatry, 58, 595600.CrossRefGoogle ScholarPubMed
Castro, V. M., Roberson, A. M., McCoy, T. H., et al. (2016). Stratifying risk for renal insufficiency among lithium-treated patients: An electronic health record study. Neuropsychopharmacology, 41, 11381143.CrossRefGoogle ScholarPubMed
ANI Pharmaceuticals Inc. (2020). LithoBID package insert. Baudette, MN.Google Scholar
Glenmark Pharmaceuticals Inc. (2020). Lithium Carbonate capsule package insert. Mahwah, NJ.Google Scholar
Nolen, W. A., Licht, R. W., Young, A. H., et al. (2019). What is the optimal serum level for lithium in the maintenance treatment of bipolar disorder? A systematic review and recommendations from the ISBD/IGSLI Task Force on treatment with lithium. Bipolar Disord, 21, 394409.CrossRefGoogle ScholarPubMed
Tyrer, S. P., Peat, M. A., Minty, P. S., et al. (1982). Bioavailability of lithium carbonate and lithium citrate: A comparison of two controlled-release preparations. Pharmatherapeutica, 3, 243246.Google ScholarPubMed
Arancibia, A., Corvalan, F., Mella, F., et al. (1986). Absorption and disposition kinetics of lithium carbonate following administration of conventional and controlled release formulations. Int J Clin Pharmacol Ther Toxicol, 24, 240245.Google ScholarPubMed
Guelen, P. J., Janssen, T. J., De Witte, T. C., et al. (1992). Bioavailability of lithium from lithium citrate syrup versus conventional lithium carbonate tablets. Biopharm Drug Dispos, 13, 503511.CrossRefGoogle ScholarPubMed
Grandjean, E. M. and Aubry, J.-M. (2009). Lithium: Updated human knowledge using an evidence-based approach. Part II: Clinical pharmacology and therapeutic monitoring. CNS Drugs, 23, 331–49.CrossRefGoogle ScholarPubMed
Diamond, J. M., Ehrlich, B. E., Morawski, S. G., et al. (1983). Lithium absorption in tight and leaky segments of intestine. J Membr Biol, 72, 153159.CrossRefGoogle ScholarPubMed
Shelley, R. K. and Silverstone, T. (1986). Single dose pharmacokinetics of 5 formulations of lithium: A controlled comparison in healthy subjects. Int Clin Psychopharmacol, 1, 324331.CrossRefGoogle ScholarPubMed
Kirkwood, C. K., Wilson, S. K., Hayes, P. E., et al. (1994). Single-dose bioavailability of two extended-release lithium carbonate products. Am J Hosp Pharm, 51, 486489.Google ScholarPubMed
Gitlin, M. (2016). Lithium side effects and toxicity: Prevalence and management strategies. Int J Bipolar Disord, 4, 2736.CrossRefGoogle ScholarPubMed
Gai, M. N., Thielemann, A. M. and Arancibia, A. (2000). Effect of three different diets on the bioavailability of a sustained release lithium carbonate matrix tablet. Int J Clin Pharmacol Ther, 38, 320326.CrossRefGoogle ScholarPubMed
Jeppsson, J. and Sjögren, J. (1975). The influence of food on side effects and absorption of lithium. Acta Psychiatr Scand, 51, 285288.CrossRefGoogle ScholarPubMed
Malhi, G. S. and Tanious, M. (2011). Optimal frequency of lithium administration in the treatment of bipolar disorder: Clinical and dosing considerations. CNS Drugs, 25, 289298.CrossRefGoogle ScholarPubMed
Luo, H., Chevillard, L., Bellivier, F., et al. (2021). The role of brain barriers in the neurokinetics and pharmacodynamics of lithium. Pharmacol Res, 166, 105480.CrossRefGoogle ScholarPubMed
Malhi, G. S., Gessler, D. and Outhred, T. (2017). The use of lithium for the treatment of bipolar disorder: Recommendations from clinical practice guidelines. J Affect Disord, 217, 266280.CrossRefGoogle ScholarPubMed
Heim, W., Oelschlager, H., Kreuter, J., et al. (1994). Liberation of lithium from sustained release preparations: A comparison of seven registered brands. Pharmacopsychiatry, 27, 2731.CrossRefGoogle ScholarPubMed
Komoroski, R. A., Newton, J. E., Sprigg, J. R., et al. (1993). In vivo 7Li nuclear magnetic resonance study of lithium pharmacokinetics and chemical shift imaging in psychiatric patients. Psychiatry Res, 50, 6776.CrossRefGoogle ScholarPubMed
Plenge, P., Stensgaard, A., Jensen, H. V., et al. (1994). 24-hour lithium concentration in human brain studied by Li-7 magnetic resonance spectroscopy. Biol Psychiatry, 36, 511516.CrossRefGoogle ScholarPubMed
Soares, J. C., Boada, F. and Keshavan, M. S. (2000). Brain lithium measurements with (7)Li magnetic resonance spectroscopy (MRS): A literature review. Eur Neuropsychopharmacol, 10, 151158.CrossRefGoogle Scholar
Soares, J. C., Boada, F., Spencer, S., et al. (2001). Brain lithium concentrations in bipolar disorder patients: Preliminary (7)Li magnetic resonance studies at 3 T. Biol Psychiatry, 49, 437443.CrossRefGoogle Scholar
Moore, C. M., Demopulos, C. M., Henry, M. E., et al. (2002). Brain-to-serum lithium ratio and age: An in vivo magnetic resonance spectroscopy study. Am J Psychiatry, 159, 12401242.CrossRefGoogle ScholarPubMed
Forester, B. P., Streeter, C. C., Berlow, Y. A., et al. (2009). Brain lithium levels and effects on cognition and mood in geriatric bipolar disorder: A lithium-7 magnetic resonance spectroscopy study. Am J Geriatr Psychiatry, 17, 1323.CrossRefGoogle ScholarPubMed
Machado-Vieira, R., Otaduy, M. C., Zanetti, M. V., et al. (2016). A selective association between central and peripheral lithium levels in remitters in bipolar depression: A 3 T-(7) Li magnetic resonance spectroscopy study. Acta Psychiatr Scand, 133, 214220.CrossRefGoogle Scholar
Millischer, V., Matheson, G. J., Bergen, S. E., et al. (2022). Improving lithium dose prediction using population pharmacokinetics and pharmacogenomics: A cohort genome-wide association study in Sweden. Lancet Psychiatry, 9, 447457.CrossRefGoogle ScholarPubMed
Nieper, H. A. (1967). A clinical study of the calcium transport substances Ca 1-d1 aspartate and Ca 2-aminoethanol phosphate as potent agents against autoimmunity and other anticytological aggressions: 2nd communication. Agressologie, 8, 395406.Google ScholarPubMed
Nieper, H. A. (1973). The clinical applications of lithium orotate: A two years study. Agressologie, 14, 407411.Google ScholarPubMed
Nieper, H. A. (1974). Capillarographic criteria on the effect of magnesium orotate, EPL substances and clofibrate on the elasticity of blood vessels. Agressologie, 15, 7377.Google ScholarPubMed
Kling, M. A., Manowitz, P. and Pollack, I. W. (1978). Rat brain and serum lithium concentrations after acute injections of lithium carbonate and orotate. J Pharm Pharmacol, 30, 368370.CrossRefGoogle ScholarPubMed
Pacholko, A. G. and Bekar, L. K. (2023). Different pharmacokinetics of lithium orotate inform why it is more potent, effective, and less toxic than lithium carbonate in a mouse model of mania. J Psychiatr Res, 164, 192201.CrossRefGoogle Scholar
Smith, D. F. and Schou, M. (1979). Kidney function and lithium concentrations of rats given an injection of lithium orotate or lithium carbonate. J Pharm Pharmacol, 31, 161163.CrossRefGoogle ScholarPubMed
Smith, A. J., Kim, S. H., Tan, J., et al. (2014). Plasma and brain pharmacokinetics of previously unexplored lithium salts. RSC Adv, 4, 1236212365.CrossRefGoogle ScholarPubMed
Pauze, D. K. and Brooks, D. E. (2007). Lithium toxicity from an Internet dietary supplement. J Med Toxicol, 3, 6162.CrossRefGoogle ScholarPubMed
Balon, R. (2013). Possible dangers of a “nutritional supplement” lithium orotate. Ann Clin Psychiatry, 25, 71.Google ScholarPubMed
Ebadi, M. S., Simmons, V. J., Hendrickson, M. J., et al. (1974). Pharmacokinetics of lithium and its regional distribution in rat brain. Eur J Pharmacol, 27, 324329.CrossRefGoogle ScholarPubMed
Renshaw, P. F., Haselgrove, J. C., Bolinger, L., et al. (1986). Relaxation and imaging of lithium in vivo. Magn Reson Imaging, 4, 193198.CrossRefGoogle ScholarPubMed
Lee, J. H., Adler, C., Norris, M., et al. (2012). 4-T 7Li 3D MR spectroscopy imaging in the brains of bipolar disorder subjects. Magn Reson Med, 68, 363368.CrossRefGoogle ScholarPubMed
Mason, G. F. and Krystal, J. H. (2020). Mapping lithium in the brain: New 3-dimensional methodology reveals regional distribution in euthymic patients with bipolar disorder. Biol Psychiatry, 88, 367368.CrossRefGoogle ScholarPubMed
Stout, J., Hozer, F., Coste, A., et al. (2020). Accumulation of lithium in the hippocampus of patients with bipolar disorder: A lithium-7 magnetic resonance imaging study at 7 Tesla. Biol Psychiatry, 88, 426433.CrossRefGoogle Scholar
Bergner, P. E., Berniker, K., Cooper, T. B., et al. (1973). Lithium kinetics in man: Effect of variation in dosage pattern. Br J Psychiatry, 49, 328339.Google ScholarPubMed
Plenge, P., Mellerup, E. T., Bolwig, T. G., et al. (1982). Lithium treatment: Does the kidney prefer one daily dose instead of two? Acta Psychiatr Scand, 66, 121128.CrossRefGoogle ScholarPubMed
Tondo, L., Abramowicz, M., Alda, M., et al. (2017). Long-term lithium treatment in bipolar disorder: Effects on glomerular filtration rate and other metabolic parameters. Int J Bipolar Disord, 5, 27.CrossRefGoogle ScholarPubMed
Amdisen, A. (1977). Serum level monitoring and clinical pharmacokinetics of lithium. Clin Pharmacokinet, 2, 7392.CrossRefGoogle ScholarPubMed
Greil, W. (1981). [Pharmacokinetics and toxicology of lithium]. Bibl Psychiatr, 69103.Google Scholar
Swartz, C. M. (1987). Correction of lithium levels for dose and blood sampling times. J Clin Psychiatry, 48, 6064.Google ScholarPubMed
Schou, M., Amdisen, A., Thomsen, K., et al. (1982). Lithium treatment regimen and renal water handling: The significance of dosage pattern and tablet type examined through comparison of results from two clinics with different treatment regimens. Psychopharmacology, 77, 387390.CrossRefGoogle ScholarPubMed
Jensen, H. V., Plenge, P., Stensgaard, A., et al. (1996). Twelve-hour brain lithium concentration in lithium maintenance treatment of manic-depressive disorder: Daily versus alternate-day dosing schedule. Psychopharmacology (Berl), 124, 275278.CrossRefGoogle ScholarPubMed
Davis, R. A., Taylor, M. A. and Abrams, R. (1978). Body fluid lithium measurements: Severity of illness and prediction of outcome. Biol Psychiatry, 13, 595599.Google ScholarPubMed
Sims, A., White, A. C. and Garvey, K. (1978). Problems associated with the analysis and interpretation of saliva lithium. Br J Psychiatry, 132, 152154.CrossRefGoogle ScholarPubMed
Tyrer, S. P., Grof, P., Kalvar, M., et al. (1981). Estimation of lithium dose requirement by lithium clearance, serum lithium and saliva lithium following a loading dose of lithium carbonate. Neuropsychobiology, 7, 152158.CrossRefGoogle ScholarPubMed
Bowden, C. L., Houston, J. P., Shulman, R. S., et al. (1982). Clinical utility of salivary lithium concentration. Int Pharmacopsychiatry, 17, 104113.CrossRefGoogle ScholarPubMed
Murru, A., Torra, M., Callari, A., et al. (2017). A study on the bioequivalence of lithium and valproate salivary and blood levels in the treatment of bipolar disorder. Eur Neuropsychopharmacol, 27, 744750.CrossRefGoogle Scholar
Parkin, G. M., McCarthy, M. J., Thein, S. H., et al. (2021). Saliva testing as a means to monitor therapeutic lithium levels in patients with psychiatric disorders: Identification of clinical and environmental covariates, and their incorporation into a prediction model. Bipolar Disord, 23, 679688.CrossRefGoogle ScholarPubMed
Kelly, D., Glassman, M., Mackowick, M., et al. (2020). O9.1. Satisfaction with using a novel fingerstick for absolute neutrophil count (ANC) at the point of treatment in patients treated with clozapine. Schizophr Bull, 46, S20S21.CrossRefGoogle Scholar
Taylor, D., Atkins, M., Harland, R., et al. (2021). Point-of-care measurement of clozapine concentration using a finger-stick blood sample. J Psychopharmacol, 35, 279283.CrossRefGoogle ScholarPubMed
Komatsu, T., Maeki, M., Ishida, A., et al. (2020). Paper-based device for the facile colorimetric determination of lithium ions in human whole blood. ACS Sens, 5, 12871294.CrossRefGoogle ScholarPubMed
Sheikh, M., Qassem, M., Triantis, I. F., et al. (2022). Advances in therapeutic monitoring of lithium in the management of bipolar disorder. Sensors (Basel), 22, 736.CrossRefGoogle Scholar
Criscuolo, F., Taurino, I., Carrara, S., et al. (2018). A novel electrochemical sensor for non-invasive monitoring of lithium levels in mood disorders. Annu Int Conf IEEE Eng Med Biol Soc, 2018, 38253828.Google ScholarPubMed
Sweilam, M. N., Varcoe, J. R. and Crean, C. (2018). Fabrication and optimization of fiber-based lithium sensor: A step toward wearable sensors for lithium drug monitoring in interstitial fluid. ACS Sens, 3, 1802–1810.CrossRefGoogle ScholarPubMed
Roberts, E. L. (1950). A case of chronic mania treated with lithium citrate and terminating fatally. Med J Aust, 2, 261262.CrossRefGoogle ScholarPubMed
Awan, S., Abelleira, A., Khehra, L., et al. (2021). Undetectable serum lithium concentrations after coadministration of liquid lithium citrate and apple juice: A case report. Ment Health Clin, 11, 2730.CrossRefGoogle ScholarPubMed
Theesen, K. A., Wilson, J. E., Newton, D. W., et al. (1981). Compatibility of lithium citrate syrup with 10 neuroleptic solutions. Am J Hosp Pharm, 38, 17501753.Google ScholarPubMed
Park, S. H., Gill, M. A. and Dopheide, J. A. (2003). Visual compatibility of risperidone solution and lithium citrate syrup. Am J Health Syst Pharm, 60, 612613.CrossRefGoogle ScholarPubMed
Girardi, P., Brugnoli, R., Manfredi, G., et al. (2016). Lithium in bipolar disorder: Optimizing therapy using prolonged-release formulations. Drugs R D, 16, 293302.CrossRefGoogle ScholarPubMed
Thornhill, D. P. (1978). Pharmacokinetics of ordinary and sustained-release lithium carbonate in manic patients after acute dosage. Eur J Clin Pharmacol, 14, 267271.CrossRefGoogle ScholarPubMed
Fava, G. A., Molnar, G., Block, B., et al. (1984). The lithium loading dose method in a clinical setting. Am J Psychiatry, 141, 812813.Google ScholarPubMed
Cooper, T. B., Bergner, P. E. and Simpson, G. M. (1973). The 24-hour serum lithium level as a prognosticator of dosage requirements. Am J Psychiatry, 130, 601603.CrossRefGoogle ScholarPubMed
Seifert, R., Bremkamp, H. and Junge, C. (1975). [Rationalized lithium adjustment by load-test (author’s transl.)]. Psychopharmacologia, 43, 285286.CrossRefGoogle ScholarPubMed
Cooper, T. B. and Simpson, G. M. (1976). The 24-hour lithium level as a prognosticator of dosage requirements: A 2-year follow-up study. Am J Psychiatry, 133, 440443.Google ScholarPubMed
Gengo, F., Timko, J., D’Antonio, J., et al. (1980). Prediction of dosage of lithium carbonate: Use of a standard predictive method. J Clin Psychiatry, 41, 319320.Google ScholarPubMed
Naiman, I. F., Muniz, C. E., Stewart, R. B., et al. (1981). Practicality of a lithium dosing guide. Am J Psychiatry, 138, 13691371.Google ScholarPubMed
Zetin, M., Garber, D., De Antonio, M., et al. (1986). Prediction of lithium dose: A mathematical alternative to the test-dose method. J Clin Psychiatry, 47, 175178.Google Scholar
Cummings, M. A., Haviland, M. G., Wareham, J. G., et al. (1993). A prospective clinical evaluation of an equation to predict daily lithium dose. J Clin Psychiatry, 54, 5558.Google ScholarPubMed
Sienaert, P., Geeraerts, I. and Wyckaert, S. (2013). How to initiate lithium therapy: A systematic review of dose estimation and level prediction methods. J Affect Disord, 146, 1533.CrossRefGoogle ScholarPubMed
Yoshida, K., Uchida, H., Suzuki, T., et al. (2018). Prediction model of serum lithium concentrations. Pharmacopsychiatry, 51, 8288.Google ScholarPubMed
Keck, P. E., Jr., McElroy, S. L. and Bennett, J. A. (2000). Pharmacologic loading in the treatment of acute mania. Bipolar Disord, 2, 4246.CrossRefGoogle ScholarPubMed
Hirschfeld, R. M., Allen, M. H., McEvoy, J. P., et al. (1999). Safety and tolerability of oral loading divalproex sodium in acutely manic bipolar patients. J Clin Psychiatry, 60, 815818.CrossRefGoogle ScholarPubMed
Kook, K. A., Stimmel, G. L., Wilkins, J. N., et al. (1985). Accuracy and safety of a priori lithium loading. J Clin Psychiatry, 46, 4951.Google ScholarPubMed
Wheeler, A., Robinson, G. and Fraser, A. (2008). Mood stabilizer loading versus titration in acute mania: Audit of clinical practice. Aust N Z J Psychiatry, 42, 955962.CrossRefGoogle ScholarPubMed
Moscovich, D. G., Shapira, B., Lerer, B., et al. (1992). Rapid lithiumization in acute manic patients. Hum Psychopharmacol, 7, 343345.CrossRefGoogle Scholar
Scherf-Clavel, M., Treiber, S., Deckert, J., et al. (2020). Drug–drug interactions between lithium and cardiovascular as well as anti-inflammatory drugs. Pharmacopsychiatry, 53, 229234.Google ScholarPubMed
Bisogni, V., Rossitto, G., Reghin, F., et al. (2016). Antihypertensive therapy in patients on chronic lithium treatment for bipolar disorders. J Hypertens, 34, 2028.CrossRefGoogle ScholarPubMed
Finley, P. R., O’Brien, J. G. and Coleman, R. W. (1996). Lithium and angiotensin-converting enzyme inhibitors: Evaluation of a potential interaction. J Clin Psychopharmacol, 16, 6871.CrossRefGoogle ScholarPubMed
Juurlink, D. N., Mamdani, M. M., Kopp, A., et al. (2004). Drug-induced lithium toxicity in the elderly: A population-based study. J Am Geriatr Soc, 52, 794798.CrossRefGoogle ScholarPubMed
Meyer, J. M., Dollarhide, A. and Tuan, I.-L. (2005). Lithium toxicity after switch from fosinopril to lisinopril. Int Clin Psychopharmacol, 20, 115118.CrossRefGoogle ScholarPubMed
Zhang, X. and Li, X. Y. (2020). Prevalence of hyponatremia among older inpatients in a general hospital. Eur Geriatr Med, 11, 685692.CrossRefGoogle ScholarPubMed
James, P. A., Oparil, S., Carter, B. L., et al. (2014). 2014 evidence-based guideline for the management of high blood pressure in adults: Report from the panel members appointed to the Eighth Joint National Committee (JNC 8). JAMA, 311, 507520.CrossRefGoogle Scholar
Thomsen, K. and Schou, M. (1973). The effect of prolonged administration of hydrochlorothiazide on the renal lithium clearance and the urine flow of ordinary rats and rats with diabetes insipidus. Pharmakopsychiatr Neuropsychopharmakol, 6, 264269.CrossRefGoogle ScholarPubMed
Petersen, V., Hvidt, S., Thomsen, K., et al. (1974). Effect of prolonged thiazide treatment on renal lithium clearance. Br Med J, 3, 143145.CrossRefGoogle ScholarPubMed
Sinke, A. P., Kortenoeven, M. L., de Groot, T., et al. (2014). Hydrochlorothiazide attenuates lithium-induced nephrogenic diabetes insipidus independently of the sodium-chloride cotransporter. Am J Physiol Renal Physiol, 306, F525F533.CrossRefGoogle ScholarPubMed
Solomon, J. G. (1980). Lithium toxicity precipitated by a diuretic. Psychosomatics, 21, 425, 429.CrossRefGoogle ScholarPubMed
Filippone, E. J., Ruzieh, M. and Foy, A. (2020). Thiazide-associated hyponatremia: Clinical manifestations and pathophysiology. Am J Kidney Dis, 75, 256264.CrossRefGoogle ScholarPubMed
Finley, P. R. (2016). Drug interactions with lithium: An update. Clin Pharmacokinet, 55, 925941.CrossRefGoogle ScholarPubMed
Armstrong, G. P. (2020). Empagliflozin-mediated lithium excretion: A case study and clinical applications. Am J Case Rep, 21, e923311.CrossRefGoogle ScholarPubMed
Teicher, M. H., Altesman, R. I., Cole, J. O., et al. (1987). Possible nephrotoxic interaction of lithium and metronidazole. JAMA, 257, 33653366.CrossRefGoogle ScholarPubMed
Joos, A. A. (1998). [Pharmacologic interactions of antibiotics and psychotropic drugs]. Psychiatr Prax, 25, 5760.Google ScholarPubMed
Atherton, J. C., Doyle, A., Gee, A., et al. (1991). Lithium clearance: Modification by the loop of Henle in man. J Physiol, 437, 377391.CrossRefGoogle ScholarPubMed
Fransen, R., Boer, W. H., Boer, P., et al. (1993). Effects of furosemide or acetazolamide infusion on renal handling of lithium: A micropuncture study in rats. Am J Physiol, 264, R129134.Google ScholarPubMed
Gimenez, I. (2006). Molecular mechanisms and regulation of furosemide-sensitive Na-K-Cl cotransporters. Curr Opin Nephrol Hypertens, 15, 517523.CrossRefGoogle ScholarPubMed
Thomsen, K. and Schou, M. (1968). Renal lithium excretion in man. Am J Physiol, 215, 823827.CrossRefGoogle ScholarPubMed
Valdiserri, E. V. (1985). A possible interaction between lithium and diltiazem: Case report. J Clin Psychiatry, 46, 540541.Google ScholarPubMed
Dubovsky, S. L., Franks, R. D. and Allen, S. (1987). Verapamil: A new antimanic drug with potential interactions with lithium. J Clin Psychiatry, 48, 371372.Google ScholarPubMed
Price, W. A. and Shalley, J. E. (1987). Lithium–verapamil toxicity in the elderly. J Am Geriatr Soc, 35, 177178.CrossRefGoogle ScholarPubMed
Binder, E. F., Cayabyab, L., Ritchie, D. J., et al. (1991). Diltiazem-induced psychosis and a possible diltiazem–lithium interaction. Arch Intern Med, 151, 373374.CrossRefGoogle Scholar
Bruun, N. E., Ibsen, H., Skøtt, P., et al. (1988). Lithium clearance and renal tubular sodium handling during acute and long-term nifedipine treatment in essential hypertension. Clin Sci (Lond), 75, 609613.CrossRefGoogle ScholarPubMed
Kortenoeven, M. L., Li, Y., Shaw, S., et al. (2009). Amiloride blocks lithium entry through the sodium channel thereby attenuating the resultant nephrogenic diabetes insipidus. Kidney Int, 76, 4453.CrossRefGoogle ScholarPubMed
Schoot, T. S., Molmans, T. H. J., Grootens, K. P., et al. (2020). Systematic review and practical guideline for the prevention and management of the renal side effects of lithium therapy. Eur Neuropsychopharmacol, 31, 1632.CrossRefGoogle ScholarPubMed
Bedford, J. J., Weggery, S., Ellis, G., et al. (2008). Lithium-induced nephrogenic diabetes insipidus: Renal effects of amiloride. Clin J Am Soc Nephrol, 3, 13241331.CrossRefGoogle ScholarPubMed
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: A literature review of approaches to clinical management and risk stratification. BMC Nephrol, 19, 305.CrossRefGoogle ScholarPubMed
Batlle, D. C., von Riotte, A. B., Gaviria, M., et al. (1985). Amelioration of polyuria by amiloride in patients receiving long-term lithium therapy. NEJM, 312, 408414.CrossRefGoogle ScholarPubMed
Kosten, T. R. and Forrest, J. N. (1986). Treatment of severe lithium-induced polyuria with amiloride. Am J Psychiatry, 143, 15631568.Google ScholarPubMed
Inoue, M., Nakai, K. and Mitsuiki, K. (2021). Triamterene in lithium-induced nephrogenic diabetes insipidus: A case report. CEN Case Rep, 10, 6468.CrossRefGoogle ScholarPubMed
Mehta, B. R. and Robinson, B. H. (1980). Lithium toxicity induced by triamterene-hydrochlorothiazide. Postgrad Med J, 56, 783784.CrossRefGoogle ScholarPubMed
Dorevitch, A. and Baruch, E. (1986). Lithium toxicity induced by combined amiloride HCl-hydrochlorothiazide administration. Am J Psychiatry, 143, 257258.Google ScholarPubMed
Roush, G. C. and Sica, D. A. (2016). Diuretics for hypertension: A review and update. Am J Hypertens, 29, 11301137.CrossRefGoogle Scholar
Supuran, C. T. (2016). Drug interaction considerations in the therapeutic use of carbonic anhydrase inhibitors. Expert Opin Drug Metab Toxicol, 12, 423431.CrossRefGoogle ScholarPubMed
Sands, J. M. (2016). Water, water everywhere: A new cause and a new treatment for nephrogenic diabetes insipidus. J Am Soc Nephrol, 27, 1872–1874.CrossRefGoogle Scholar
de Groot, T., Sinke, A. P., Kortenoeven, M. L., et al. (2016). Acetazolamide attenuates lithium-induced nephrogenic diabetes insipidus. J Am Soc Nephrol, 27, 20822091.CrossRefGoogle ScholarPubMed
de Groot, T., Doornebal, J., Christensen, B. M., et al. (2017). Lithium-induced NDI: Acetazolamide reduces polyuria but does not improve urine concentrating ability. Am J Physiol Renal Physiol, 313, F669676.CrossRefGoogle Scholar
Gordon, C. E., Vantzelfde, S. and Francis, J. M. (2016). Acetazolamide in lithium-induced nephrogenic diabetes insipidus. N Engl J Med, 375, 2008–2009.CrossRefGoogle ScholarPubMed
Macau, R. A., da Silva, T. N., Silva, J. R., et al. (2018). Use of acetazolamide in lithium-induced nephrogenic diabetes insipidus: A case report. Endocrinol Diabetes Metab Case Rep, 2018, 17-0154.CrossRefGoogle Scholar
Dabrowski, W., Siwicka-Gieroba, D., Robba, C., et al. (2021). Potentially detrimental effects of hyperosmolality in patients treated for traumatic brain injury. J Clin Med, 10, 4141.CrossRefGoogle Scholar
Kralovec, K., Fartacek, R., Plöderl, M., et al. (2011). Low serum lithium associated with immoderate use of Coca-Cola Zero. J Clin Psychopharmacol, 31, 543544.CrossRefGoogle ScholarPubMed
Jefferson, J. W. (1988). Lithium tremor and caffeine intake: Two cases of drinking less and shaking more. J Clin Psychiatry, 49, 7273.Google ScholarPubMed
Mester, R., Toren, P., Mizrachi, I., et al. (1995). Caffeine withdrawal increases lithium blood levels. Biol Psychiatry, 37, 348350.CrossRefGoogle ScholarPubMed
Levin, G. M., Grum, C. and Eisele, G. (1998). Effect of over-the-counter dosages of naproxen sodium and acetaminophen on plasma lithium concentrations in normal volunteers. J Clin Psychopharmacol, 18, 237240.CrossRefGoogle ScholarPubMed
Phelan, K. M., Mosholder, A. D. and Lu, S. (2003). Lithium interaction with the cyclooxygenase 2 inhibitors rofecoxib and celecoxib and other nonsteroidal anti-inflammatory drugs. J Clin Psychiatry, 64, 13281334.CrossRefGoogle ScholarPubMed
Thomas, M. C. (2014). Renal effects of dapagliflozin in patients with type 2 diabetes. Ther Adv Endocrinol Metab, 5, 5361.CrossRefGoogle ScholarPubMed
Boehringer Ingelheim Pharmaceuticals Inc. (2022). Jardiance package insert. Ridgefield, CT 06877.Google Scholar
Pi, H. T. and Surawicz, F. G. (1978). Severe neurotoxicity and lithium therapy. Clin Toxicol, 13, 479486.Google ScholarPubMed
Aref, M. A., El-Badramany, M., Hannora, N., et al. (1982). Lithium loss in sweat. Psychosomatics, 23, 407.CrossRefGoogle ScholarPubMed
Jefferson, J. W., Greist, J. H., Clagnaz, P. J., et al. (1982). Effect of strenuous exercise on serum lithium level in man. Am J Psychiatry, 139, 15931595.Google ScholarPubMed
Grandjean, E. M. and Aubry, J.-M. (2009). Lithium: Updated human knowledge using an evidence-based approach. Part III: Clinical safety. CNS Drugs, 23, 397418.CrossRefGoogle ScholarPubMed
Davis, J., Desmond, M. and Berk, M. (2018). Lithium and nephrotoxicity: Unravelling the complex pathophysiological threads of the lightest metal. Nephrology (Carlton), 23, 897903.CrossRefGoogle ScholarPubMed
Wilting, I., Fase, S., Martens, E. P., et al. (2007). The impact of environmental temperature on lithium serum levels. Bipolar Disord, 9, 603608.CrossRefGoogle ScholarPubMed
Cheng, S., Buckley, N. A., Siu, W., et al. (2020). Seasonal and temperature effect on serum lithium concentrations. Aust N Z J Psychiatry, 54, 282287.CrossRefGoogle ScholarPubMed
Merwick, A., Cooke, J., Neligan, A., et al. (2011). Acute neuropathy in setting of diarrhoeal illness and hyponatraemia due to lithium toxicity. Clin Neurol Neurosurg, 113, 923924.CrossRefGoogle ScholarPubMed
Arancibia, A., Paulos, C., Chavez, J., et al. (2003). Pharmacokinetics of lithium in healthy volunteers after exposure to high altitude. Int J Clin Pharmacol Ther, 41, 200206.CrossRefGoogle ScholarPubMed
Uber, A. and Twark, C. (2022). Symptom overlap of acute mountain sickness and lithium toxicity: A case report. High Alt Med Biol, 23, 291293.Google ScholarPubMed
Wesseloo, R., Wierdsma, A. I., van Kamp, I. L., et al. (2017). Lithium dosing strategies during pregnancy and the postpartum period. Br J Psychiatry, 211, 3136.CrossRefGoogle ScholarPubMed
Harel, Z., McArthur, E., Hladunewich, M., et al. (2019). Serum creatinine levels before, during, and after pregnancy. JAMA, 321, 205207.CrossRefGoogle Scholar
Westin, A. A., Brekke, M., Molden, E., et al. (2017). Changes in drug disposition of lithium during pregnancy: A retrospective observational study of patient data from two routine therapeutic drug monitoring services in Norway. BMJ Open, 7, e015738.CrossRefGoogle ScholarPubMed
Carmassi, C., Del Grande, C., Masci, I., et al. (2019). Lithium and valproate serum level fluctuations within the menstrual cycle: A systematic review. Int Clin Psychopharmacol, 34, 143150.CrossRefGoogle ScholarPubMed
Rittmannsberger, H. and Malsiner-Walli, G. (2013). Mood-dependent changes of serum lithium concentration in a rapid cycling patient maintained on stable doses of lithium carbonate. Bipolar Disord, 15, 333337.CrossRefGoogle Scholar
McElroy, S. L. and Keck, P. E., Jr. (2014). Metabolic syndrome in bipolar disorder: A review with a focus on bipolar depression. J Clin Psychiatry, 75, 4661.CrossRefGoogle ScholarPubMed
Godin, O., Leboyer, M., Belzeaux, R., et al. (2021). Non-alcoholic fatty liver disease in a sample of individuals with bipolar disorders: Results from the FACE-BD cohort. Acta Psychiatr Scand, 143, 8291.CrossRefGoogle Scholar
Ayub, S., Saboor, S., Usmani, S., et al. (2022). Lithium toxicity following Roux-en-Y gastric bypass: Mini review and illustrative case. Ment Health Clin, 12, 214218.CrossRefGoogle ScholarPubMed
Bingham, K. S., Thoma, J., Hawa, R., et al. (2016). Perioperative lithium use in bariatric surgery: A case series and literature review. Psychosomatics, 57, 638644.CrossRefGoogle ScholarPubMed
Musfeldt, D., Levinson, A., Nykiel, J., et al. (2016). Lithium toxicity after Roux-en-Y bariatric surgery. BMJ Case Rep, 2016, bcr2015214056.CrossRefGoogle Scholar
Niessen, R., Sottiaux, T., Schillaci, A., et al. (2018). [Lithium toxicity after bariatric surgery]. Rev Med Liege, 73, 8287.Google ScholarPubMed
Dahan, A., Porat, D., Azran, C., et al. (2019). Lithium toxicity with severe bradycardia post sleeve gastrectomy: A case report and review of the literature. Obes Surg, 29, 735738.CrossRefGoogle ScholarPubMed
Jamison, S. C. and Aheron, K. (2020). Lithium toxicity following bariatric surgery. SAGE Open Med Case Rep, 8, 2050313x20953000.Google ScholarPubMed
Lin, Y. H., Liu, S. W., Wu, H. L., et al. (2020). Lithium toxicity with prolonged neurologic sequelae following sleeve gastrectomy: A case report and review of literature. Medicine (Baltimore), 99, e21122.CrossRefGoogle ScholarPubMed
Marques, A. R., Alho, A., Martins, J. M., et al. (2021). Lithium intoxication after bariatric surgery: A case report. Acta Med Port, 34, 382386.CrossRefGoogle ScholarPubMed
Mallinger, A. G., Thase, M. E., Haskett, R., et al. (2008). Verapamil augmentation of lithium treatment improves outcome in mania unresponsive to lithium alone: Preliminary findings and a discussion of therapeutic mechanisms. Bipolar Disord, 10, 856866.CrossRefGoogle Scholar
Abdel-Zaher, A. O. (2000). The myoneural effects of lithium chloride on the nerve–muscle preparations of rats. Role of adenosine triphosphate-sensitive potassium channels. Pharmacol Res, 41, 163178.CrossRefGoogle ScholarPubMed
Jefferson, J. W. (1978). Lithium–pancuronium interaction. Ann Intern Med, 88, 577.CrossRefGoogle ScholarPubMed
Kishimoto, N., Yoshikawa, H. and Seo, K. (2020). Potentiation of rocuronium bromide by lithium carbonate: A case report. Anesth Prog, 67, 146150.CrossRefGoogle ScholarPubMed
Cohen, W. J. and Cohen, N. H. (1974). Lithium carbonate, haloperidol, and irreversible brain damage. JAMA, 230, 12831287.CrossRefGoogle ScholarPubMed
Gurrera, R. J., Caroff, S. N., Cohen, A., et al. (2011). An international consensus study of neuroleptic malignant syndrome diagnostic criteria using the Delphi method. J Clin Psychiatry, 72, 12221228.CrossRefGoogle ScholarPubMed
Gurrera, R. J., Mortillaro, G., Velamoor, V., et al. (2017). A validation study of the International Consensus Diagnostic Criteria for neuroleptic malignant syndrome. J Clin Psychopharmacol, 37, 6771.CrossRefGoogle ScholarPubMed
Lieberman, J. A., Stroup, T. S., McEvoy, J. P., et al. (2005). Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med, 353, 12091223.CrossRefGoogle ScholarPubMed
Inc, Mylan Pharmaceuticals. (2019). Haloperidol package insert. Morgantown, WV.Google Scholar
Boora, K., Xu, J. and Hyatt, J. (2008). Encephalopathy with combined lithium–risperidone administration. Acta Psychiatr Scand, 117, 394395; discussion 396.CrossRefGoogle ScholarPubMed
Hermida, A. P., Janjua, A. U., Glass, O. M., et al. (2016). A case of lithium-induced parkinsonism presenting with typical motor symptoms of Parkinson’s Disease in a bipolar patient. Int Psychogeriatr, 28, 21012104.CrossRefGoogle Scholar
Marras, C., Herrmann, N., Fischer, H. D., et al. (2016). Lithium use in older adults is associated with increased prescribing of Parkinson medications. Am J Geriatr Psychiatry, 24, 301309.CrossRefGoogle ScholarPubMed
Friedman, J. H. (2020). Movement disorders induced by psychiatric drugs that do not block dopamine receptors. Parkinsonism Relat Disord, 79, 6064.CrossRefGoogle Scholar
Uwai, Y. and Nabekura, T. (2022). Relationship between lithium carbonate and the risk of Parkinson-like events in patients with bipolar disorders: A multivariate analysis using the Japanese adverse drug event report database. Psychiatry Res, 314, 114687.CrossRefGoogle ScholarPubMed
Erro, R., Landolfi, A., D’Agostino, G., et al. (2021). Bipolar disorder and Parkinson’s Disease: A (123)I-Ioflupane dopamine transporter SPECT study. Front Neurol, 12, 652375.CrossRefGoogle ScholarPubMed
Revet, A., Montastruc, F., Roussin, A., et al. (2020). Antidepressants and movement disorders: A postmarketing study in the world pharmacovigilance database. BMC Psychiatry, 20, 308.CrossRefGoogle ScholarPubMed
Chenu, F. and Bourin, M. (2006). Potentiation of antidepressant-like activity with lithium: Mechanism involved. Curr Drug Targets, 7, 159163.CrossRefGoogle ScholarPubMed
Janssen, S., Bloem, B. R. and van de Warrenburg, B. P. (2017). The clinical heterogeneity of drug-induced myoclonus: An illustrated review. J Neurol, 264, 15591566.CrossRefGoogle ScholarPubMed
Guttuso, T., Jr. (2019). High lithium levels in tobacco may account for reduced incidences of both Parkinson’s disease and melanoma in smokers through enhanced β-catenin-mediated activity. Med Hypotheses, 131, 109302.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure [email protected] is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×