Book contents
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
Appendix G - Molecular and Mesophase Symmetry
Published online by Cambridge University Press: 21 July 2022
- Frontmatter
- Dedication
- Contents
- Preface
- 1 Phases and Mesophases
- 2 Phase Transitions
- 3 Order Parameters
- 4 Distributions
- 5 Particle–Particle Interactions
- 6 Dynamics and Dynamical Properties
- 7 Molecular Theories
- 8 Monte Carlo Methods
- 9 The Molecular Dynamics Method
- 10 Lattice Models
- 11 Molecular Simulations
- 12 Atomistic Simulations
- Appendix A A Modicum of Linear Algebra
- Appendix B Tensors and Rotations
- Appendix C Taylor Series
- Appendix D The Dirac Delta Function
- Appendix E Fourier Series and Transforms
- Appendix F Wigner Rotation Matrices and Angular Momentum
- Appendix G Molecular and Mesophase Symmetry
- Appendix H Quaternions and Rotations
- Appendix I Nuclear Magnetic Resonance
- Appendix J X-ray Diffraction
- Appendix K Stochastic Processes
- Appendix L Simulating Polarized Optical Microscopy Textures
- Appendix M Units and Conversion Factors
- Appendix N Acronyms and Symbols
- References
- Index
Summary
The application of molecular and mesophase symmetries to identify the minimal set of order parameters required to treat single-particle properties for different mesophases and mesogens or solutes is discussed. The use of symmetry to build rotational invariants (Stone S functions) to describe pairwise properties is described and explicit expressions of invariants are provided for uniaxial and biaxial particles.
Keywords
- Type
- Chapter
- Information
- Liquid Crystals and their Computer Simulations , pp. 574 - 586Publisher: Cambridge University PressPrint publication year: 2022